NV5

INDOOR AIR QUALITY ASSESSMENT

Muir Elementary School

2526 6th Street Santa Monica, CA 90405

Prepared for:

Santa Monica-Malibu Unified School District 2828 West 4th Street Santa Monica, CA 90405

SMSD-21-10226 October 18, 2021

October 18, 2021

Mr. Carey Upton Santa Monica-Malibu Unified School District. 2828 West 4th Street Santa Monica, CA 90405

Subject: Ambient Air Sampling Report SMASH/Muir Elementary School 2526 6th Street Santa Monica, CA 90405

Alta Project: SMSD-21-10226

Dear Mr. Upton:

Alta Environmental/NV5 is pleased to present this ambient air sampling report for the abovementioned Site. Please refer to the report for our findings and conclusions.

If you have any questions, please call me at (562) 495-5777.

For and on behalf of Alta Environmental/NV5,

Jomes C Byers for

James Byers Senior Consultant/Project Manager

DORESOD

David Schack Vice President – Vice President

TABLE OF CONTENTS

EXE	CUTIVE S	UMMARY	1
	FINDIN	IGS AND CONCLUSIONS	1
1	INTROD	UCTION	5
	1.1	OBJECTIVES	5
2	BACKGR	OUND	5
	2.1	PROJECT HISTORY	5
	2.2	SITE DESCRIPTION AND FEATURES	5
3	SAMPLI	NG METHODOLOGY	5
	3.1	TOTAL AIRBORNE MOLD SPORE SAMPLES	6
	3.2	TAPE LIFT SOURCE SAMPLES	6
	3.3	ENVIRONMENTAL PARAMETER TESTING	6
	3.4	VOC SUMMA CANISTER SAMPLING	6
	3.5	QA/QC SAMPLES	7
	3.6	REGULATORY SCREENING LEVELS	7
	3.7	CAL/OSHA PERMISSIBLE EXPOSURE LIMITS AND NIOSH RECOMMEDNED	
		EXPOSURE LIMITS	7
	3.8	DATA VALIDATION - VOCS	7
4	SUMMA	RY OF ANALYTICAL RESULTS	
	4.1	AIRBORNE MOLD SPORE SAMPLE RESULTS	8
	4.2	MOLD TAPE LIFT SAMPLE RESULTS	-
	4.3	ENVIRONMENTAL PARAMETER RESULTS	8
	4.4	VOCS	9
5	FINDING	SS AND CONCLUSIONS	.11
6		PTIONS AND LIMITATIONS	-
7	DISCLAI	MER	.14

FIGURES

FIGURE 1 – Site Location Map FIGURE 2 – Sample Location Map

TABLES

TABLE 1 – Detection Summary Table for VOC Samples

LIST OF APPENDICES

APPENDIX A – Laboratory Data and Chain of Custody Documentation APPENDIX B – Direct Read Instrumentation Data

LIST OF ACRONYMS

APN	Assessor's Parcel Number
DTSC	Department of Toxic Substances Control
HASP	Health and Safety Plan
HERO	Human and Ecological Risk Office
μg/m³	micrograms per cubic meter
OSHA	Occupational Safety and Health Administration
Cal/OSHA	California Occupational Safety and Health Administration
QA	quality assurance
QC	quality control
RSL	Regional Screening Level
SL	Screening Level
USEPA	United States Environmental Protection Agency
VOCs	volatile organic compounds

EXECUTIVE SUMMARY

Alta Environmental/NV5 (Alta/NV5) was contracted by The Santa Monica Malibu Unified School District (Client) to perform an Indoor Air Quality Assessment at SMASH/Muir Elementary School (the 'Site"). The assessment was performed in response to occupants concerns regarding indoor air quality at the Site. Exceptions or deletions from the contracted scope of work are described in Section 2.4 of this report.

The Site consists of multiple slab-on grade buildings located on the north side of Ocean Park Boulevard between Fifth Street and Sixth Street. The address associated with the Site is 2526 Sixth Street, Santa Monica, CA 90405.

The Client has requested that Microbial, Indoor Air Quality and Environmental Parameter testing be conducted in Buildings 100, 200, 400, 500, 600 (the "work areas") to assess the buildings regarding the following testing parameters:

- Indoor airborne mold spore levels
- Indoor temperature and relative humidity
- Airborne dust
- Formaldehyde
- Carbon monoxide
- Carbon dioxide
- Oxygen
- Volatile Organic Compounds (VOCs).

The scope of services for this assessment consisted of the following:

- Total airborne fungal spore sampling (with duplicate samples) in Rooms 555, 560, and 615.
- Additional representative total airborne fungal spore sampling in the remainder of the work areas, along with exterior sampling for statistical comparison.
- Tape lift sampling of suspect fungal growth, as needed in the work areas
- Carbon dioxide, carbon monoxide, oxygen, formaldehyde and airborne dust sampling via handheld, direct read, or logging instrumentation throughout the work areas
- VOCs utilizing summa canisters in the library and Rooms 555, 560, and 615 as well as representative VOC sampling throughout the remaining work areas utilizing a hand-held instrument.

FINDINGS AND CONCLUSIONS

Total airborne mold spore sampling

Samples were collected in randomly selected areas as well as specified locations. Sampling was conducted
on two days. Results of the initial sampling conducted on Thursday, September 9, 2021, indicated
concentrations of Penicillium/Aspergillus spores in Rooms 605, 660, and 665 were greater than the
outside reference sample. It should be noted that a wicker mat placed beneath a plant exhibited visible
mold growth. It was further noted that gardening activities, including composting, are conducted outside
this building (west side and that windows were open on this side of the building. These activities, and the

open windows may have contributed to the higher Penicillium/Aspergillus spore concentrations and may further lead to indoor air quality issues. Based on a review of the sample results collected inside the buildings as well as the outdoor reference samples, it was determined that additional sampling would be required. Additional sampling was conducted on September 11, 2021. Results of these samples did not appear to indicate a significant difference between the indoor air samples as compared to the outside reference samples.

• Mold spore sampling was conducted with the air handling devices in each room in operation, as it is our understanding that the units are constantly operated during occupancy.

Visual Observations and Service Tape Lift Samples

- Room 665 Confirmed mold growth was observed to be present on a wicker mat located under a plant
- Room 555 A small section of potential mold growth (< 1 sq ft) was observed to be present on the laminated beam at the peak of the ceiling.
 - Two air filters (not the large HEPA unit) were observed to be present in the room. The tall tower type was observed to have significant dust build-up on the intake filters and on the supply side of the unit.
- Building 600 Several sources of potential mold growth located on the exterior of the building which may adversely affect indoor air quality
 - North-west of the building composting drums and garden boxes were observed. Composting and mulching activities area a possible sources of mold spores which can affect air quality. Windows were observed to be open on this elevation of the building.
 - \circ $\;$ Dust accumulation was observed in many rooms throughout the building.
 - Signs of insect presence and activity were noted in many areas
 - Certain areas of the building received significant daylight which increased solar loading and temperatures when compared with other areas.
 - Certain areas of the building envelope were not properly sealed, which may allow for moisture intrusion, as well as insect and rodent access.

Direct Reading Instrument Results

- Date for the following parameters was collected using direct read instruments
 - Temperature
 - Relative Humidity
 - Airborne Dust
 - Volatile organic compounds (VOCs)
 - Formaldehyde
- Upon reviewing the data, the results appear to be within normal parameters and do not appear to be abnormal. Formaldehyde readings on the 2nd floor of the 200 building were greater than expected, but were below EPA levels documented as potentially causing adverse health effects. It should be noted that the meter used for this sampling has a resolution of 0.01 parts per million (ppm) with an accuracy range of 10 percent at 2 ppm.

Volatile Organic Compounds (VOCs)

VOC sampling was conducted at two separate times. The first set of samples were collected on September 11, 2021. The results of those samples were reported as none-detected. Based on those results, additional sampling was conducted on October 6, 2021. Samples were collected in Rooms 555, 560, 615, the library and an outside (ambient) reference location. Additionally, two side-by-side samples were collected and sent to another laboratory for analysis. Results of the second sampling, and the split samples indicated the presence, in low concentrations of VOCs. The table below provides the tabulated results and a comparison to occupational exposure levels.

Sample	Date of	Location	Compounds Detected	Result-	Cal/OSHA	NIOSH
No	Analysis			micrograms	Permissible	Recommended
				per cubic	Exposure	Exposure Limit
				meter	Limit	(REL)***
				(µg/m³)	(PEL)***	
Ambient-	10-6-	Ambient	Acetone	10.4	1,200,000	590,000
J	2021**	Air-	Acrolein	1.49	250	250
			Benzene	0.66	3,190	0.1ppm
			Carbon Tetrachloride	0.80	12,600	12,600
			Chloroform	0.37	978,000	978,000
			Cyclohexane	0.39	105,000	105,000
			Ethylbenzene	0.21	22,000	435,000
			(Trichloromethane)	1.09	5,600,000	5,600,000
			FREON-12			
			(dichlorofluoromethane)	2.33	42,000	40,000
			FREON-113 (1,1,2-			
			trichlor-1,2,2-	0.51	7,600,000	7,600,000
			trifluoroethane)			
			n-Hexane			
			Isopropanol	6.88	180,000	180,000
			4-Isopropyltoluene	6.16	980,000	980,000
				0.11	Not	Not established
			Methylene Chloride		established	No REL
			n-Pentane	0.75	87,000	1,800,000
			Propylene	1.78	1,800,000	?
			Styrene	1.85	?	215,000
			Toluene	0.13	215,000	375,000
			1,2,4-Trimethylbenzene	1.39	37,000	125,000
			m+p-Xylene	0.63	125,000	435,000
			o-Xylene	0.62	435,000	435,000
				0.25	435,000	
555-	10-6-	Rm. 555	Acetone	11.9	1,200,000	590,000
	2021**		Acrolein	2.0	250	250
			Benzene	0.51	3190	0.1ppm
			Carbon Tetrachloride	0.75	12,600	12,600

Sample	Date of	Location	Compounds Detected	Result-	Cal/OSHA	NIOSH
No	Analysis			micrograms	Permissible	Recommended
				per cubic	Exposure	Exposure Limit
				meter	Limit	(REL)***
				(μg/m³)	(PEL)***	
			Chloroform	0.37	978,000	978,000
			Carbon disulfide	0.12	3,000	3,000
			Cyclohexane	0.30	105,000	105,000
			Ethylbenzene 0.18 22,000		22,000	435,000
			FREON-11 0.96 5,600,000		5,600,000	
			(Trichloromethane)			
			FREON-12	FREON-12 2.11 42,000		42,000
			(dichlorofluoromethane)			
			FREON-113 (1,1,2-	0.44	7,600,000	7,600,000
			trichlor-1,2,2-			
			trifluoroethane)			
			n-Hexane	4.793	180,000	180,000
			2-Hexanone	1.43	235,000	4,000
			Isopropanol	4.47	980,000	980,000
			4-Isopropyltoluene	0.11	Not	Not established
			Methylene Chloride	0.68	established	1,800,000
			n-Pentane	1.22	1,800,000	?
			Propylene	1.45	?	375,000
			Toluene	1.11	37,000	125,000
			1,2,4-Trimethylbenzene	0.61	125,000	435,000
			m+p-Xylene	0.50	435,000	435,000
			o-Xylene	0.20	435,000	

*American Environmental Testing Laboratory, Burbank, California

**Jones Environmental, Santa Fe Springs, California

***Converted from milligrams to micrograms

• N/A-not applicable

Slightly elevated concentrations of acrolein (2.0 μ g/m³) were detected within Room 555 as compared to the outside reference sample (1.49 μ g/m³). Although well below the published occupational exposure limits shown above (Cal/OSHA PEL), the result was above its corresponding DTSC screening level of 0.021 μ g/m³. It should also be noted that the ambient sample also exceeded this level.

Acrolein is primarily used to make other chemicals and may also be found in some livestock feed. Acrolein is itself a pesticide and is added to irrigation canals and the water supplies of some industrial plants to control underwater plant, algae, and slime growth.

Small amounts of acrolein can be formed and can enter the air when organic matter such as trees and other plants (including tobacco) are burned and when fuels such as gasoline and oil are burned. Acrolein is also formed in building fires at concentrations that can be deadly for occupants.

1 INTRODUCTION

On behalf of the Santa Monica-Malibu Unified School District, NV5 conducted ambient air sampling at the at SMASH/Muir Elementary School located at 2526 6th Street in Santa Monica, CA. This report documents the objectives for performing the work, the scope of work and sampling rationale, field and laboratory methodologies, an evaluation of data with respect to the environmental conditions assessed, and conclusions.

1.1 **OBJECTIVES**

The purpose of performing the ambient air sampling was to acquire and evaluate information sufficient to achieve the objectives outlined below, which were developed through consultation between Alta/NV5, our client (Santa Monica-Malibu Unified School District.

- The objective for this assessment was to document the environmental paraments shown below in Buildings 100, 200, 400, 500, 600 for the following:
 - Indoor airborne mold spore levels
 - Indoor temperature and relative humidity
 - o Airborne dust
 - Formaldehyde
 - Carbon monoxide (CO)
 - Carbon dioxide (CO₂)
 - Oxygen (O₂)
 - Volatile Organic Compounds (VOCs).

The scope of work outlined in Section 3 was developed specifically to satisfy the objectives outlined above.

2 BACKGROUND

2.1 PROJECT HISTORY

A significant construction effort was commenced during the summer of 2021, and as of the time of this assessment, construction was in progress throughout the Site. When teachers and students re-occupied buildings in early September, some staff reported concerns related to the indoor air quality at some locations at the Site which prompted this assessment.

2.2 SITE DESCRIPTION AND FEATURES

The Site consists of multiple slab-on grade buildings located on the north side of Ocean Park Boulevard between Fifth Street and Sixth Street. The address associated with the Site is 2526 Sixth Street, Santa Monica, CA 90405

3 SAMPLING METHODOLOGY

The sampling activities and methodology described below were intended to satisfy the data needs to meet the client's objectives for the microbial, indoor air quality and environmental parameter testing, which is described in Section 1 of this report.

3.1 TOTAL AIRBORNE MOLD SPORE SAMPLES

Total airborne mold spores were collected using a Gast hi-volume sampling pump operating at 15 liters of air per minute. A 10-minute air sample was collected with a resulting sample volume of 150 liters. Samples were collected using Air-O-Cell cassettes that contain glass coated with a sticky medium so that impacted particles (including spores) will adhere to the surface. The analysis identifies molds to the genus level. Some mold spores such as *Aspergillus* or *Penicillium* cannot be distinguished using this analytical method. Sample analysis was conducted by Aerobiology a laboratory accredited by the American Industrial Hygiene Association located in Huntington Beach, California. Sampling was conducted with air handling equipment in normal operation.

3.2 TAPE LIFT SOURCE SAMPLES

Tape source samples were collected from the suspect material. A direct microscopic examination was made by Aerobiology, an accredited laboratory located in Huntington Beach, California.

This analytical method provides a semi-quantitative result. Descriptive terms for semi-quantitative tape-lift results are as follows (from Environmental Microbiology Laboratory publication: *Discussion of the Mold Growth Rating Scale Utilized in Direct Microscopic Examination*).

3.3 ENVIRONMENTAL PARAMETER TESTING

The following parameters were recorded on hand-held logging instrumentation: CO, CO₂, O₂, formaldehyde, temperature, relative humidity (Rh), and VOCs. Data from this monitoring can be found in Appendix B.

3.4 VOC SUMMA CANISTER SAMPLING

Sampling for VOCs was conducted in the follow areas at the site: Exterior (ambient) locations, Rooms 555, 560, 616, and Building 200/Library.

Four interior locations were selected throughout the Site sampling via six-liter Summa Canisters, each equipped with a dedicated vacuum gauge and an 8-hour fixed-flow controller. Prior to deployment, the analytical laboratory cleaned and individually certified each of the canisters and flow controllers. Each Summa Canister located within the Site was set at an elevation of approximately four feet above the floor, where they remained untouched during the sampling period.

An exterior ambient air sample was collected from a location proximate to where interior samples were collected at an elevation of four feet above ground surface. All Summa Canisters were closed, and the air sampling event ended prior to the vacuum gauges reaching zero. Upon completion of the ambient air sampling, all Summa Canisters were transported along with proper Chain of Custody documentation to American Environmental Testing Laboratory located in Burbank, CA. Samples were analyzed for VOCs by EPA Method TO-15and methane by EPA Method 8015m. Locations of the indoor samples and exterior ambient air samples are presented on Figure 2.

3.5 QA/QC SAMPLES

Quality assurance and control samples (duplicate samples) were collected from the exterior and Room 555 and analyzed as part of this assessment. Samples were sent to Jones Environmental, Inc. in Santa Fe Springs, CA for analysis.

3.6 **REGULATORY SCREENING LEVELS**

VOC concentrations in ambient air were compared to the values published on *Table 1 DTSC Recommended Screening Levels for Ambient Air* HHRA Note 3 dated June 2020, supplemented by the US EPA RSLs updated May 2021.

3.7 CAL/OSHA PERMISSIBLE EXPOSURE LIMITS AND NIOSH RECOMMEDNED EXPOSURE LIMITS

This information is provided for comparison purposes and relates to occupational exposure to chemicals in the workplace.

3.8 DATA VALIDATION - VOCS

Alta/NV5 collected a duplicate sample for exterior ambient air (Ambient-J) and indoor ambient air (555-J) during the sampling event at the same location as primary samples Ambient-A and 555-A. These samples were collected to validate the field and laboratory procedures and to ensure that the collected data are representative of the site conditions. The concentrations of the duplicate samples were elevated when compared to the concentrations identified in the primary sample.

4 SUMMARY OF ANALYTICAL RESULTS

4.1 AIRBORNE MOLD SPORE SAMPLE RESULTS

Total mold spore samples were collected within the following rooms as well as multiple outside (ambient) reference samples: 100, 105, 200, 205, 225, 258, 400, 410, 460, 480,500, 505, 560, 555, 605, 660, and 665.

Samples were collected in random areas as well as specified locations. Sampling was conducted on two days. Results of the initial sampling conducted on Thursday, September 9, 2021, indicated concentrations of Penicillium/Aspergillus spores in Room 605, 665, and 660 greater than the outside reference sample. It should be noted that a wicker mat placed beneath a plant in Room 665 exhibited visible mold growth. It was further noted that gardening activities, including composting, are conducted outside this building (west side and that windows were open on this side of the building. The aforementioned conditioned coupled with the open windows may have contributed to the higher Penicillium/Aspergillus spore concentrations and may further compromise the air quality in these rooms.

Based on a review of the sample results collected inside the buildings as well as the outdoor reference samples, it was determined that additional sampling was prudent. Additional sampling was conducted on September 11, 2021. Results of these samples did not indicate a significant difference between the indoor air samples as compared to the outside reference samples.

Mold spore sampling was conducted with the air handling devices in each room in operation, as it is our understanding that the units are operated during occupancy.

4.2 MOLD TAPE LIFT SAMPLE RESULTS

Sample TL-01 was collected of suspect mold growth west of the cabinets in Room 665 on a wicker mat located beneath a potted plant. The results indicated the presence of mold growth structures and were reported as follows:

- Few Aspergillus spores, conidiophores, hyphae seen
- Numerous Scopulariopsis spores, conidiophores, hyphae seen. *Scopulariopsis* is a filamentous fungus that inhabits soil, plant material, feathers, and insects.

Remaining samples CB-01 TO CB-06 contained minor to background levels of mold spores and related structures.

4.3 ENVIRONMENTAL PARAMETER RESULTS

Upon reviewing the data, the results are within acceptable parameters and do not appear to be abnormal. Formaldehyde readings on the 2nd floor of the 200 building were greater than expected but were below EPA levels documented as potentially causing adverse health effects.

4.4 **VOCS**

The following VOCs were detected:

Sample	Date of	Location	Compounds Detected	Result-	Cal/OSHA	NIOSH
No	Analysis			micrograms	Permissible	Recommended
	-			per cubic	Exposure	Exposure Limit
				meter	Limit	(REL)***
				μg/m³	(PEL)***	
AA-1	9-28-	Ambient	No positive results	N/A	N/A	N/A
	2021*	air-	reported			
IA-555	9-28-	Rm. 555	No positive results	N/A	N/A	N/A
	2021*		reported			
IA-560	9-28-	Rm. 560	No positive results N/A N/A		N/A	
	2021*		reported			
IA-615	9-28-	Rm. 615	No positive results	lo positive results N/A N/A		N/A
	2021*		reported			
IA-Library	9-28-	Library	No positive results	N/A	N/A	N/A
	2021*		reported			
Ambient-	10-5-	Ambient	Acetone	9.13	1,200,000	590,000
А	2021*	air-	Dichlorodiflouromethane	2.53	4,950,000	4,950,000
Library	10-5-	Library	No positive results	N/A	N/A	N/A
	2021*		reported			
560	10-5-	Rm. 560	Carbon disulfide	2.82	3,000	3,000
	2021*					
615	10-5-	Rm. 615	No positive results	N/A	N/A	N/A
	2021*		reported			
555-A	10-5-	Bldg. 500,	Carbon disulfide	3.20	3,000	3,000
	2021*	Rm. 555-A				
Ambient-	10-6-	Ambient	Acetone	10.4	1,200,000	590,000
J	2021**	Air-	Acrolein	1.49	250	250
			Benzene	0.66	1ppm	0.1ppm
			Carbon Tetrachloride	0.80	12,600	12,600
			Chloroform	0.37	9,780	9,780
			Cyclohexane	0.39	105,000	105,000
			Ethylbenzene	0.21	22,000	435,000
			FREON-11	1.09	5,600,000	5,600,000
			(Trichloromethane)			
			FREON-12	2.33	42,000	40,000
			(dichlorofluoromethane)			
			FREON-113 (1,1,2-	0.51	7,600,000	7,600,000

Sample	Date of	Location	Compounds Detected	Result-	Cal/OSHA	NIOSH
No .	Analysis			micrograms	Permissible	Recommended
				per cubic	Exposure	Exposure Limit
				meter	Limit	(REL)***
				μg/m³	(PEL)***	. ,
			trichlor-1,2,2-			
			trifluoroethane)			
			n-Hexane	6.88	180,000	180,000
			Isopropanol	6.16	980,000	980,000
			4-Isopropyltoluene	0.11	NE	NE
			Methylene Chloride	0.75	8,700	9,780
			n-Pentane	1.78	1,800,000	1,800,000
			Propylene	1.85	Asphyxiant	Asphyxiant
			Styrene	0.13	215,000	215,000
			Toluene	1.39	37,000	375,000
			1,2,4-Trimethylbenzene	0.63	125,000	125,000
			m+p-Xylene	0.62	435,000	4,340
			o-Xylene	0.25	435,000	435,000
555-J	10-6-	Bldg. 500,	Acetone	11.9	1,200,000	590,000
	2021**	Rm. 555	Acrolein	2.0	250	250
			Benzene	0.51	1ppm	0.1ppm
			Carbon Tetrachloride	0.75	12,600	12,600
			Chloroform	0.37	9,780	9,780
			Carbon disulfide	0.12	3,000	3,000
			Cyclohexane	0.30	105,000	105,000
			Ethylbenzene	0.18	22,000	435,000
			FREON-11	0.96	5,600,000	5,600,000
			(Trichloromethane)			
			FREON-12	2.11	42,000	42,000
			(dichlorofluoromethane)			
			FREON-113 (1,1,2-	0.44	7,600,000	7,600,000
			trichlor-1,2,2-			
			trifluoroethane)			
			n-Hexane	4.793	180,000	180,000
			2-Hexanone	1.43	235,000	4,000
			Isopropanol	4.47	980,000	980,000
			4-Isopropyltoluene	0.11	NE	NE
			Methylene Chloride	0.68	8,700	8,700
			n-Pentane	1.22	1,800,000	1,800,000
			Propylene	1.45	Asphyxiant	Asphyxiant
			Toluene	1.11	37,000	375,000
			1,2,4-Trimethylbenzene	0.61	125,000	125,000
			m+p-Xylene	0.50	435,000	435,000

Sample	Date of	Location	Compounds Detected	Result-	Cal/OSHA	NIOSH
No	Analysis			micrograms	Permissible	Recommended
				per cubic	Exposure	Exposure Limit
				meter	Limit	(REL)***
				μg/m³	(PEL)***	
			o-Xylene	0.20	435,000	435,000

*American Environmental Testing Laboratory, Burbank, California

**Jones Environmental, Santa Fe Springs, California

***Converted from milligrams to micrograms

NE-not established

The results of the laboratory analysis of the collected ambient air samples are presented on the above table and summarized below. All VOCs detected in the indoor samples collected were also found in the exterior ambient air sample. The concentrations found in the indoor samples were less than the amount of the concentrations found in the exterior sample except for the following compound(s):

- Acetone was detected in sample 555-J at a concentration of 11.9 μg/m³. However, the residential screening limit (RSL) is 32,000 μg/m³.
- Carbon Disulfide was detected in sample 560 at a concentration of 2.82 μg/m³, in sample 555-A at 3.20 μg/m³ and in sample 555-J at a concentration of 0.12 μg/m³. The RSL is 730 μg/m³.

Carbon disulfide is used in many industries. It's used to make rubber, viscose rayon, cellophane, and carbon tetrachloride.

Acrolein was detected in concentrations of 1.49 μg/m³ in sample Ambient -J (exterior) and 2.00 μg/m³ in sample 555-J. The RSL 0.021 μg/m³. Airborne concentrations acrolein in the ambient sample collected from the exterior of the building and the sample collected in Room 555 exceed the RSL.

Small amounts of acrolein can be formed and can enter the air when organic matter such as trees and other plants (including tobacco) are burned and when fuels such as gasoline and oil are burned. The presence of this item in the samples collected is most likely the byproduct of combustion, whether from organic matter or possibly gasoline combustion. Acrolein is primarily used to make other chemicals and may also be found in some livestock feed. Acrolein is itself a pesticide and is added to irrigation canals and the water supplies of some industrial plants to control underwater plant, algae, and slime growth.

5 FINDINGS AND CONCLUSIONS

Alta/NV5 has performed an indoor air quality assessment in general conformance with the scope and limitations of Alta/NV5's scope of work, as agreed upon with the Client. Based on of the data generated by this investigation, the following findings and conclusions have been developed:

The presence of concentrations of acrolein above the RSL may be related conditions in the ambient environment such as smoke from brush fires, structure fires or other sources of combustion including automobile exhaust. Cigarette smoke is a known source of acrolein as well as oils (including cooking oils) when heated to high temperatures. A review of potential sources within the building (if any) may be helpful. Follow-up air sampling may be useful to document conditions at another point in time. According to the EPA "average concentrations of acrolein measured in the ambient air in the U.S. ranged from non-detect to 2.05 micrograms per cubic meter in 2006-2009. The range of concentrations for individual 24-hour measurements may be appreciably higher." (USEPA)

A review of air samples collected on September 9, 2021 (the initial air sampling) indicated elevated (above outdoor concentrations) of Penicillium/Aspergillus spores in Rooms 605, 660, and 665. This result prompted Alta/NV5 to conduct additional sir sampling on September 11, 2021. The results of the second air sample collection did not indicate a significant difference between indoor airborne fungal spore sample types and concentrations and the outside reference sample. The proximity of gardening and composting activities combined with open windows and window adjacent to these locations may contribute to elevated fungal spore concentrations that may affect individuals with allergies or other sensitivities.

Minimal visible mold growth was confirmed through laboratory analysis. The assumed mold growth found at the ceiling of Room 555 should be removed and the source of the moisture in this area be determined and repaired.

Wicker mat in Room 665 with fungal growth should be removed and discarded.

The District should review it's insect control program and modify where applicable, as insect presence and activity was observed during the site inspection(s).

Air filter machines should be regularly cleaned accordance to manufacturer recommendations to ensure proper operation.

Dust accumulation was observed in many areas during the inspection(s). A detailed cleaning of the interior spaces should be completed.

Cleaning sprays were observed in many of the classrooms, which appeared to be consistent throughout the Site. It was also observed that soaps and cleaners varied between classrooms. We assume the consistent materials have been provided by the District and that teachers and staff are providing their own materials as well. We recommend that a review of materials brought in by teachers and staff are consistent with the District's SOP.

It was noted that certain areas receive significant daylight which increased solar loading and increased temperatures within the buildings (Room 670). Installation of shades in this area and similar locations should be considered.

Openings were observed around the building 600 envelope that were not sealed. All open areas should be properly sealed to avoid moisture intrusion as well as to prevent insect and rodent access.

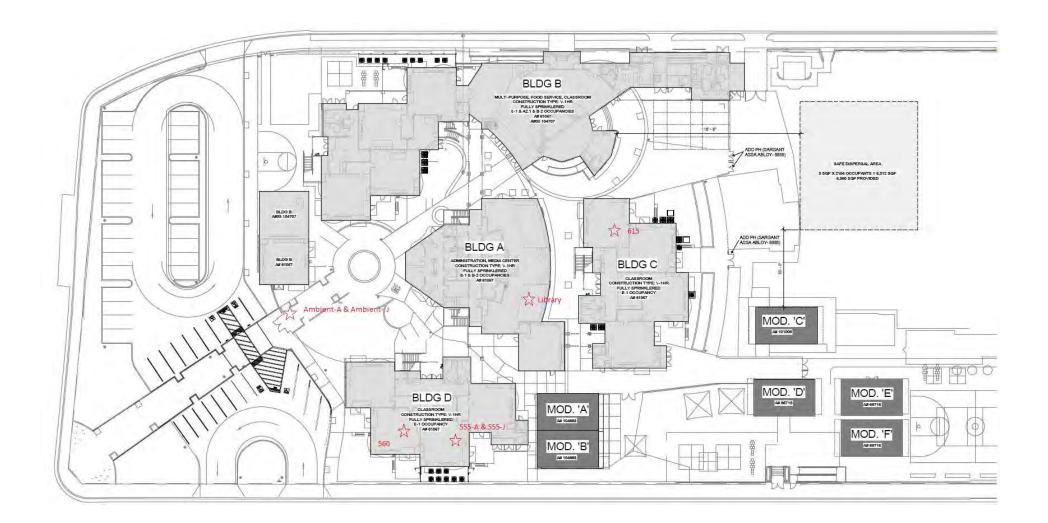
Formaldehyde readings on the 2nd floor of the 200 building were greater than expected but were below EPA levels documented as potentially causing adverse health effects. It was noted that the air handling equipment in this area was not in operation during our assessment; increased ventilation will likely aid in decreasing higher concentrations of formaldehyde. Different furniture was noted in this building as compared to the others; the District should review furniture choices in this area of building 200 to confirm it is of low formaldehyde construction.

6 ASSUMPTIONS AND LIMITATIONS

This report was prepared exclusively for use by Santa Monica-Malibu Unified School District and may not be relied upon by any other person or entity without Alta/NV5's express written permission. The information, conclusions and recommendations described in this report apply to conditions existing at certain locations when services were performed and are intended only for the specific purposes, locations, time frames and project parameters indicated. Alta/NV5 cannot be responsible for the impact of any changes in environmental standards, practices, or regulations after performance of services.

In performing our professional services, we have applied present engineering and scientific judgment and used a level of effort consistent with the current standard of practice for similar types of studies.

As applicable, Alta/NV5 has relied in good faith upon representations and information furnished by individuals with respect to operations and existing property conditions, to the extent that they have not been contradicted by data obtained from other sources. Accordingly, Alta/NV5 accepts no responsibility for any deficiencies, omissions, misrepresentations, or fraudulent acts of persons interviewed.


This report is issued with the understanding that the client, the property owner, or its representative is responsible for ensuring that the information, conclusions, and recommendations contained herein are brought to the attention of the appropriate regulatory agencies, as required.

7 DISCLAIMER

Alta/NV5's investigation and the conclusions and recommendations generated as a result reflect a subjective evaluation of limited data and thus may not be representative of all conditions present at the site. This investigation was limited to the accessible areas of the work area described. Alta/NV5 will not guarantee that all areas of potential mold contamination were identified during this limited investigation, or that other contaminants are not present, and that additional sampling may be required to identify such areas and/or contaminants.

Limitations are inherent in the sampling and inspections that Alta/NV5 completed, and as such, it is agreed that to the extent permitted by law, the Client is required to defend, indemnify and hold Alta/NV5 harmless for any, and all claims arising out of or otherwise connected with Alta/NV5's performance pursuant to this contract.

FIGURES

TABLE

Sample No	Date of Analysis	Location	Compounds Detected	Result-micrograms per cubic meter (μg/m ³)	Cal/OSHA Permissible Exposure Limit (PEL)***	NIOSH Recommended Exposure Limit (REL)***	RSLs**** (μg/m3)
AA-1	9-28-2021*	Ambient air-	No positive results reported	N/A	N/A	N/A	N/A
IA-555	9-28-2021*	Rm. 555	No positive results reported	N/A	N/A	N/A	N/A
IA-560	9-28-2021*	Rm. 560	No positive results reported	N/A	N/A	N/A	N/A
IA-615	9-28-2021*	Rm. 615	No positive results reported	N/A	N/A	N/A	N/A
IA-Library	9-28-2021*	Library	No positive results reported	N/A	N/A	N/A	N/A
Ambient-A	10-5-2021*	Ambient air-	Acetone	9.13	1,200,000	590,000	32,000
			Dichlorodiflouromethane	2.53	4,950,000	4,950,000	100
Library	10-5-2021*	Library	No positive results reported	N/A	N/A	N/A	N/A
560	10-5-2021*	Rm. 560	Carbon disulfide	2.82	3,000	3,000	730
615	10-5-2021*	Rm. 615	No positive results reported	N/A	N/A	N/A	N/A
555-A	10-5-2021*	Bldg. 500, Rm. 555-A	Carbon disulfide	3.2	3,000	3,000	730
Ambient-J	10-6-2021**	Ambient Air-	Acetone	,	1,200,000	590,000	32,000
Ambient-J			Acrolein	1.49	250	250	0.021
			Benzene	0.66	1ppm	0.1ppm	0.36
			Carbon Tetrachloride	0.8	12,600	12,600	0.47
			Chloroform	0.37	9,780	9,780	0.12
			Cyclohexane	0.39	105,000	105,000	6300
			Ethylbenzene	0.21	22,000	435,000	1.1
			FREON-11 (Trichlorofluoromethane)	1.09	5,600,000	5,600,000	NE
			FREON-12 (dichlorodifluoromethane)	2.33	42,000	40,000	5,200
			FREON-113 (1,1,2-trichlor-1,2,2-trifluoroethane)	0.51	7,600,000	7,600,000	5200
			n-Hexane	6.88	180,000	180,000	730
			Isopropanol	6.16	980,000	980,000	210
			4-Isopropyltoluene	0.11	No	t established	
			Methylene Chloride	0.75	8,700	No REL	100
			n-Pentane	1.78	1,800,000	1,800,000	1000
			Propylene	1.85	No	ot established	
			Styrene	0.13	215,000	215,000	1000
			Toluene	1.39	37,000	375,000	5200
			1,2,4-Trimethylbenzene	0.63	125,000	125,000	63
			m+p-Xylene	0.62	435,000	435,000	100
			o-Xylene	0.25	435,000	435,000	100

*American Environmental Testing Laboratory, Burbank, California

**Jones Environmental, Santa Fe Springs, California

***Converted from milligrams to micrograms

**** Residential Screening Levels

Sample No	Date of Analysis	Location	Compounds Detected	Result-micrograms per cubic meter (μg/m ³)	Cal/OSHA Permissible Exposure Limit (PEL)***	NIOSH Recommended Exposure Limit (REL)***	RSLs**** (µg/m3)
555-J	10-6-2021**	Bldg. 500, Rm. 555	Acetone	11.9	1,200,000	590,000	32000
			Acrolein	2	250	250	0.021
			Benzene	0.51	1ppm	0.1ppm	0.36
			Carbon Tetrachloride	0.75	12,600	12,600	0.47
			Chloroform	0.37	9,780	9,780	0.12
			Carbon disulfide	0.12	3,000	3,000	730
			Cyclohexane	0.3	105,000	105,000	6300
		Ethylbenzene		0.18	22,000	435,000	1.1
			FREON-11 (Trichloromethane)	0.96	5,600,000	5,600,000	NE
			FREON-12 (dichlorofluoromethane)	2.11	42,000	42,000	5,200
			FREON-113 (1,1,2-trichlor-1,2,2-trifluoroethane)	0.44	7,600,000	7,600,000	5200
			n-Hexane	4.793	180,000	180,000	730
			2-Hexanone	1.43	235,000	4,000	31
		l	Isopropanol	4.47	980,000	980,000	210
			4-Isopropyltoluene	0.11	Not estal	olished	3,100
			Methylene Chloride	0.68	87,000	No REL	100
			n-Pentane	1.22	1,800,000	1,800,000	1000
			Propylene	1.45	Asphyxiant	Asphyxiant	3100
			Toluene	1.11	37,000	375,000	5200
			1,2,4-Trimethylbenzene	0.61	125,000	125,000	63
			m+p-Xylene	0.5	435,000	435,000	100
			o-Xylene	0.2	435,000	435,000	100

*American Environmental Testing Laboratory, Burbank, California

**Jones Environmental, Santa Fe Springs, California

***Converted from milligrams to micrograms

**** Residential Screening Levels

Building	Room	Time	VOC	Particulate	Temp	RH	CO	CO ²	0 ₂	Formaldehyde	
			(PPM)	(mg/ft ³)	(° F)	(%)	(PPM)	(PPM)	(%)	(PPM/mg/m ³)	
	Outside - Before	1012	0.0	0.025	92.8	40.3	0.0	200	20.9	0.01/0.012	
	100	1015	0.0	0.019	87.0	40.1	0.0	200	20.9	0.01/0.012	
100	105	1019	0.0	0.016	81.5	47.4	0.0	200	20.9	0.02/0.025	
1 1	107	1033	0.0	0.011	77.7	54.2	0.0	200	20.9	0.01/0.012	
	120	1028	0.1	0.014	79.5	59.1	0.0	200	20.9	0.04/0.049	
	Outside - After	1107	0.1	0.022	92.3	40.7	0.0	200	20.9	0.0/0.0	
	Outside										
	200	1100	0.1	0.014	83.1	46.8	0.0	200	20.9	0.02/0.025	
	205	1039	0.0	0.006	79.3	79.1	0.0	200	20.9	0.01/0.012	
200	252	1351	0.4	0.024	80.6	54.1	0.0	400	20.9	0.05/0.061	
5	254	1355	0.3	0.021	80.4	53.7	0.0	400	20.9	0.04/0.049	
	256	1348	0.5	0.013	81.5	54.7	0.0	400	20.9	0.06/0.074	
	258	1343	0.6	0.009	80.7	58.3	0.0	400	20.9	0.10/0.123	
	Outside - After	1400	0.2	0.021	75.7	55.4	0.0	200	20.9	0.01/0.012	
	Outside - Before	1111	0.1	0.014	81.1	45.5	0.0	200	20.9	0.01/0.012	
	400	1147	0.1	0.028	73.0	64.4	0.0	200	20.9	0.01/0.012	
	402	1143	0.0	0.016	73.7	62.3	0.0	200	20.9	0.0/0.0	
	405	1139	0.1	0.017	75.3	59.7	0.0	200	20.9	0.02/0.25	
	410	1119	0.1	0.019	77.5	52.9	0.0	200	20.9	0.01/0.012	
_	415	1125	0.1	0.015	76.2	56.8	0.0	200	20.9	0.01/0.012	
400	425	1130	0.1	0.009	75.3	58.8	0.0	200	20.9	0.01/0.012	
	440	1134	0.1	0.006	75.5	59.5	0.0	200	20.9	0.01/0.012	
	455	1154	0.1	0.002	74.6	64.2	0.0	200	20.9	0.01/0.012	
	460	1150	0.1	0.004	74.8	61.5	0.0	300	20.9	0.02/0.025	
	480	1204	0.1	0.007	76.2	61.1	0.0	300	20.9	0.02/0.025	
	490	1208	0.1	0.021	77.0	60.3	0.0	300	20.9	0.01/0.012	
	Outside - After	1238	0.1	0.017	86.1	43.3	0.0	200	20.9	0.01/0.012	
	Outside - Before	1240	0.1	0.026	87.3	43.3	0.0	200	20.9	0.02/0.025	
	500	1321	0.1	0.000	75.5	57.9	0.0	300	20.9	0.01/0.012	
	505	1311	0.1	0.001	78.0	53.2	0.0	200	20.9	0.02/0.025	
	510	1313	0.2	0.001	76.8	67.9	0.0	200	20.9	0.02/0.025	
_	515	1316	0.2	0.000	76.6	56.1	0.0	200	20.9	0.02/0.025	
500	520	1306	0.1	0.000	80.2	47.7	0.0	200	20.9	0.02/0.025	
	555	1338	0.2	0.001	79.1	56.0	0.0	200	20.9	0.01/0.012	
	560	1333	0.2	0.000	80.6	55.7	0.0	200	20.9	0.01/0.12	
	565	1326	0.1	0.002	80.9	55.6	0.0	200	20.9	0.00/0.00	
	570	1331	0.2	0.002	79.7	56.0	0.0	200	20.9	0.01/0.012	
	Outside - After	1345	0.1	0.026	87.3	43.3	0.0	200	20.9	0.02/0.025	
	Outside - Before	1404	0.2	0.024	77.3	55.8	0.0	200	20.9	0.00/0.00	
	600	1435	0.3	0.008	78.0	57.5	0.0	200	20.9	0.04/0.049	
	605	1426	0.0	0.003	77.9	60.0	0.0	200	20.9	0.01/0.012	
	615	1430	0.3	0.023	77.7	56.3	0.0	200	20.9	0.00/0.00	
600	620	1424	0.3	0.015	81.1	53.5	0.0	200	20.9	0.02/0.025	
90	655	1409	0.2	0.003	77.5	56.6	0.0	200	20.9	0.01/0.012	
	660	1415	0.2	0.001	77.1	56.6	0.0	200	20.9	0.00/0.00	
	665	1420	0.2	0.002	78.9	56.8	0.0	200	20.9	0.02/0.025	
	670	1416	0.0	0.008	77.7	62.2	0.0	200	20.9	0.02/0.025	
	Outside - After	1442	0.3	0.026	98.7	41.3	0.0	200	20.9	0.01/0.012	

APPENDIX A – LABORATORY DATA AND CHAIN OF CUSTODY DOCUMENTATION

15061 Springdale St Suite 111 Huntington Beach, CA 92649 7148958401

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg Long Beach CA, 90807 Attn: David Schack Project: **SMASH** Condition of Sample(s) Upon Receipt: Acceptable

Date Collected: 9/9/2021 Date Received: 9/10/2021 Date Analyzed: 9/10/2021 Date Reported: 9/11/2021 Project ID: 21039783 Page 1 of 13

Client Sample #		090	9-1			0909-1 Dup				
Sample Location	(Dutside Bldg	500, 100, 20	0	(Outside Bldg 500, 100, 200				
Sample Volume (L)		15	50			15	50			
Lab Sample #		210397	83-001			210397	83-002			
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/O		
Alternaria	1	7	<1	-	5	33	3	-		
ascospores	3	20	1	-	4	27	2	-		
basidiospores	9	60	4	-	13	87	8	-		
Botrytis	1	7	<1	-	-	-	-	-		
Cladosporium	185	1,233	84	-	122	813	74	-		
Epicoccum	1	7	<1	-	-	-	-	-		
Ganoderma	1	7	<1	-	1	7	<1	-		
hyphal elements	2	13	<1	-	7	47	4	-		
Penicillium/Aspergillus group	15	100	7	-	7	47	4	-		
Smuts,Periconia,Myxomycetes	1	7	<1	-	4	27	2	-		
Stachybotrys	-	-	-	-	1	7	<1	-		
Unknown	2	13	<1	-	-	-	-	-		
		Debris F	Rating 3			Debris F	Rating 3			
Analytical Sensitivity	Ar	alytical Sens	itivity: 7 spr/	m ³	An	alytical Sens	itivity: 7 spr/	m ³		
Comments										
Total *See Footnotes	221	1,473	~100%	-	164	1,093	~100%	-		

Client Sample #		090)9-2			0909-	2 Dup			
Sample Location		Rm	615			Rm	615			
Sample Volume (L)		1	50			150				
Lab Sample #		210397	/83-003			210397	/83-004			
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/O		
Alternaria	1	7	1	-	1	7	<1	-		
ascospores	3	20	4	-	2	13	2	-		
basidiospores	5	33	7	-	8	53	8	-		
Chaetomium	-	-	-	-	1	7	<1	-		
Cladosporium	51	340	69	-	68	453	65	-		
hyphal elements	3	20	4	-	10	67	10	-		
Penicillium/Aspergillus group	3	20	4	-	6	40	6	-		
Smuts, Periconia, Myxomycetes	7	47	9	-	8	53	8	-		
Unknown	1	7	1	-	1	7	<1	-		
		Debris I	Rating 3			Debris I	Rating 3			
Analytical Sensitivity	Ar	Analytical Sensitivity: 7 spr/m ³			An	Analytical Sensitivity: 7 spr/m ³				
Comments										
Total *See Footnotes	74	493	~100%	-	105	700	~100%	-		

15061 Springdale St Suite 111 Huntington Beach, CA 92649 7148958401

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg Long Beach CA, 90807 Attn: David Schack Project: **SMASH** Condition of Sample(s) Upon Receipt: Acceptable
 Date Collected:
 9/9/2021

 Date Received:
 9/10/2021

 Date Analyzed:
 9/10/2021

 Date Reported:
 9/11/2021

 Project ID:
 21039783

 Page 2 of 13

Client Sample #		090)9-3			0909-	3 Dup			
Sample Location		Rm	605			Rm	605			
Sample Volume (L)		150				15	150			
Lab Sample #		210397	783-005			210397	/83-006			
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	I/O			
Alternaria	1	7	<1	-	-	-	-	-		
ascospores	1	7	<1	-	6	40	4	-		
basidiospores	8	53	8	-	10	67	6	-		
Cladosporium	64	427	64	-	68	453	44	-		
Ganoderma	2	13	2	-	-	-	-	-		
hyphal elements	12	80	12	-	12	80	8	-		
Oidium	-	-	-	-	1	0	<1	-		
Penicillium/Aspergillus group	2	13	2	-	52	347	34	-		
Smuts, Periconia, Myxomycetes	7	47	7	-	6	40	4	-		
Unknown	3	20	3	-	1	7	<1	-		
		Debris Rating 3 Debris Rating 3								
Analytical Sensitivity	Ar	Analytical Sensitivity: 7 spr/m ³				Analytical Sensitivity: 7 spr/m ³				
Comments										
Total *See Footnotes	100	667	~100%	-	156	1,033	~100%	-		

Client Sample #		090)9-4			0909-	4 Dup	
Sample Location		Rm	665			Rm	665	
Sample Volume (L)		150				15	50	
Lab Sample #		210397	783-007			210397	83-008	
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	I/O	
ascospores	4	27	3	-	-	-	-	-
basidiospores	15	100	11	-	12	80	7	-
Botrytis	1	7	<1	-	-	-	-	-
Chaetomium	1	7	<1	-	2	13	1	-
Cladosporium	67	447	50	-	75	500	45	-
hyphal elements	5	33	4	-	12	80	7	-
Penicillium/Aspergillus group	37	247	28	-	60	400	36	-
Rusts	1	7	<1	-	-	-	-	-
Smuts, Periconia, Myxomycetes	1	7	<1	-	6	40	4	-
Stemphylium-like	-	-	-	-	1	7	<1	-
Trichocladium	1	7	<1	-	-	-	-	-
Unknown	1	7	<1	-	-	-	-	-
		Debris	Rating 3		Debris Rating 3			
Analytical Sensitivity	Ar	nalytical Sens	sitivity: 7 spr/	m ³	Analytical Sensitivity: 7 spr/m ³			
Comments								
Total *See Footnotes	134	893	~100%	-	168	1,120	~100%	-

15061 Springdale St Suite 111 Huntington Beach, CA 92649 7148958401

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg Long Beach CA, 90807 Attn: David Schack Project: **SMASH** Condition of Sample(s) Upon Receipt: Acceptable Date Collected: 9/9/2021 Date Received: 9/10/2021 Date Analyzed: 9/10/2021 Date Reported: 9/11/2021 Project ID: 21039783 Page 3 of 13

Client Sample #		090	9-5			0909-	5 Dup	
Sample Location		Rm	660			Rm	660	
Sample Volume (L)		150				15	50	
Lab Sample #		210397	/83-009			210397	83-010	
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/O
Alternaria	1	7	<1	-	-	-	-	-
ascospores	1	7	<1	-	1	7	<1	-
basidiospores	10	67	7	-	9	60	5	-
Cladosporium	102	680	71	-	113	753	60	-
Epicoccum	-	-	-	-	1	7	<1	-
Ganoderma	-	-	-	-	1	7	<1	-
hyphal elements	7	47	5	-	10	67	5	-
Penicillium/Aspergillus group	19	127	13	-	33	220	17	-
Smuts, Periconia, Myxomycetes	2	13	1	-	18	120	10	-
Torula	-	-	-	-	1	7	<1	-
Ulocladium	1	7	<1	-	-	-	-	-
Unknown	1	7	<1	-	2	13	1	-
	Debris Rating 3 Debris Rating 3						Rating 3	
Analytical Sensitivity	Analytical Sensitivity: 7 spr/m ³ Analytical Sensitivity: 7 spr/m						′m ³	
Comments								
Total *See Footnotes	144	960	~100%	-	189	1,260	~100%	-

Client Sample #		090)9-6			0909-	6 Dup				
Sample Location		Rm	205			Rm	205				
Sample Volume (L)		1	50			1	150				
Lab Sample #		210397	783-011			210397	/83-012				
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	I/O					
Alternaria	1	7	5	-	-	-	-	-			
basidiospores	2	13	10	-	2	13	7	-			
Cladosporium	11	73	52	-	19	127	63	-			
Epicoccum	-	-	-	-	1	7	3	-			
hyphal elements	3	20	14	-	5	33	17	-			
Penicillium/Aspergillus group	1	7	5	-	3	20	10	-			
Smuts, Periconia, Myxomycetes	3	20	14	-	-	-	-	-			
	Debris Rating 3 Debris Rating						Rating 2				
Analytical Sensitivity	Analytical Sensitivity: 7 spr/m ³ Analytical Sensitivity: 7 sp						itivity: 7 spr/	′m ³			
Comments											
Total *See Footnotes	21	140	~100%	-	30	200	~100%	-			

15061 Springdale St Suite 111 Huntington Beach, CA 92649 7148958401

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg Long Beach CA, 90807 Attn: David Schack Project: **SMASH** Condition of Sample(s) Upon Receipt: Acceptable Date Collected: 9/9/2021 Date Received: 9/10/2021 Date Analyzed: 9/10/2021 Date Reported: 9/11/2021 Project ID: 21039783 Page 4 of 13

Client Sample #		090)9-7			0909-	7 Dup			
Sample Location		Rm	200			Rm 200				
Sample Volume (L)		150				1	50			
Lab Sample #		21039783-013				210397	9783-014			
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	%Ttl	I/C			
Alternaria	-	-	-	-	1	7	1	-		
ascospores	2	13	2	-	-	-	-	-		
basidiospores	5	33	4	-	3	20	3	-		
Cladosporium	86	573	68	-	60	400	67	-		
hyphal elements	10	67	8	-	9	60	10	-		
Penicillium/Aspergillus group	15	100	12	-	13	87	14	-		
Smuts,Periconia,Myxomycetes	7	47	6	-	4	27	4	-		
Unknown	1	7	<1	-	-	-	-	-		
	Debris Rating 3 Debris Rating 3						Rating 3			
Analytical Sensitivity	Ar	alytical Sens	itivity: 7 spr/ı	m ³	Analytical Sensitivity: 7 spr/m ³					
Comments										
Total *See Footnotes	126	840	~100%	-	90	600	~100%	-		

Client Sample #		090)9-8			0909-	8 Dup	
Sample Location		Rm	252			Rm	252	
Sample Volume (L)	150					1	50	
Lab Sample #		21039783-015				210397	/83-016	
Spore Identification	RawCtspr/m³%TtlI/ORawCtspr/m³						%Ttl	I/O
ascospores	2	13	22	-	-	-	-	-
basidiospores	4	27	44	-	1	7	7	-
Cladosporium	2	13	22 - 10 6				67	-
hyphal elements	1	7	11	-	-	-	-	-
Smuts, Periconia, Myxomycetes	-	-	-	-	2	13	13	-
Unknown	-	-	-	-	2	13	13	-
		Debris I	Rating 3			Debris I	Rating 3	
Analytical Sensitivity	Analytical Sensitivity: 7 spr/m ³ Analytical Sensitivity: 7 spr,						′m ³	
Comments								
Total *See Footnotes	9	60	~100%	-	15	100	~100%	-

15061 Springdale St Suite 111 Huntington Beach, CA 92649 7148958401

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg Long Beach CA, 90807 Attn: David Schack Project: **SMASH** Condition of Sample(s) Upon Receipt: Acceptable Date Collected: 9/9/2021 Date Received: 9/10/2021 Date Analyzed: 9/10/2021 Date Reported: 9/11/2021 Project ID: 21039783 Page 5 of 13

Client Sample #		090)9-9			0909-	9 Dup			
Sample Location		Rm	258			Rm	258			
Sample Volume (L)		1	50			15	150			
Lab Sample #		210397	783-017			210397	83-018			
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	RawCt spr/m ³ %Ttl				
ascospores	1	7	2	-	-	-	-	-		
basidiospores	4	27	8	-	7	47	6	-		
Cladosporium	32	213	60	-	81	540	75	-		
Diplocladiella	-	-	-	-	1	7	<1	-		
Ganoderma	-	-	-	-	1	7	<1	-		
hyphal elements	6	40	11	-	8	53	7	-		
Penicillium/Aspergillus group	5	33	9	-	7	47	6	-		
Smuts,Periconia,Myxomycetes	5	33	9	-	2	13	2	-		
Trichocladium	-	-	-	-	1	7	<1	-		
		Debris I	Rating 3			Debris F	Rating 3			
Analytical Sensitivity	Analytical Sensitivity: 7 spr/m ³ Analytical Sensitivity: 7 spr/m						m ³			
Comments										
Total *See Footnotes	53	353	~100%	-	108	720	~100%	-		

Client Sample #		090	9-10			0909-3	10 Dup			
Sample Location		Rm	500			Rm 500				
Sample Volume (L)		150				1	150			
Lab Sample #		21039783-019				210397	/83-020			
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	%Ttl	I/O			
ascospores	1	7	10	-	1	7	4	-		
basidiospores	1	7	10	-	-	-	-	-		
Cladosporium	2	13	20	-	14	93	50	-		
hyphal elements	2	13	20	-	6	40	21	-		
Penicillium/Aspergillus group	4	27	40	-	3	20	11	-		
Smuts,Periconia,Myxomycetes	-	-	-	-	3	20	11	-		
Unknown	-	-	-	-	1	7	4	-		
		Debris I	Rating 3			Debris I	Rating 3			
Analytical Sensitivity	Analytical Sensitivity: 7 spr/m ³ Analytical Sensitivity: 7 sp						itivity: 7 spr/	′m ³		
Comments										
Total *See Footnotes	10	67	~100%	-	28	187	~100%	-		

15061 Springdale St Suite 111 Huntington Beach, CA 92649 7148958401

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg Long Beach CA, 90807 Attn: David Schack Project: **SMASH** Condition of Sample(s) Upon Receipt: Acceptable Date Collected: 9/9/2021 Date Received: 9/10/2021 Date Analyzed: 9/10/2021 Date Reported: 9/11/2021 Project ID: 21039783 Page 6 of 13

Client Sample #		090	9-11			0909-1	L1 Dup			
Sample Location		Rm 505				Rm 505				
Sample Volume (L)		150				1	50			
Lab Sample #		210397	/83-021			210397	/83-022			
Spore Identification	RawCt	RawCt spr/m ³ %Ttl I/O RawCt spr/m ³								
basidiospores	1	7	9	-	3	20	20	-		
Cladosporium	4	27	36	-	5	33	33	-		
hyphal elements	1	1 7 9 - 4 27					27	-		
Penicillium/Aspergillus group	5	33	45	-	-	-	-	-		
Smuts, Periconia, Myxomycetes	-	-	-	-	3	20	20	-		
		Debris I	Rating 3			Debris I	Rating 3			
Analytical Sensitivity	Ar	Analytical Sensitivity: 7 spr/m ³ Analytical Sensiti						′m ³		
Comments										
Total *See Footnotes	11	73	~100%	-	15	100	~100%	-		

Client Sample #		090	9-13			0909-1	L3 Dup		
Sample Location		Rm	560		Rm 560				
Sample Volume (L)	150				150				
Lab Sample #		21039783-023				210397	83-024		
Spore Identification	RawCt spr/m ³ %Ttl I/O RawCt spr/m ³						%Ttl	I/O	
basidiospores	1	7	9	-	1	11	-		
Cladosporium	4	27	36	-	3	33	-		
hyphal elements	1	7	9	-	1	1 7 11			
Penicillium/Aspergillus group	5	33	45	-	4	27	44	-	
		Debris I	Rating 3			Debris F	Rating 3		
Analytical Sensitivity	Ar	alytical Sens	itivity: 7 spr/i	m ³	Analytical Sensitivity: 7 spr/m ³				
Comments									
Total *See Footnotes	11	73	~100%	-	9	60	~100%	-	

Client Sample #		090	9-14			0909-3	14 Dup			
Sample Location		Rm	400		Rm 400					
Sample Volume (L)	150					1	.50			
Lab Sample #		21039783-025				210397	/83-026			
Spore Identification	RawCt spr/m ³ %Ttl I/O RawCt spr/m ³						%Ttl	I/O		
ascospores	1	7	8	-	2	13	15	-		
basidiospores	1	7	8	-	2	13	15	-		
Cladosporium	4	27	33	-	3	23	-			
hyphal elements	2	13	17	-	1	7	8	-		
Penicillium/Aspergillus group	4	27	33	-	5	33	38	-		
		Debris	Rating 3			Debris I	Rating 3			
Analytical Sensitivity	Analytical Sensitivity: 7 spr/m ³ Analytical Sensitivity: 7 sp						itivity: 7 spr/	′m ³		
Comments										
Total *See Footnotes	12	80	~100%	-	13	87	~100%	-		

15061 Springdale St Suite 111 Huntington Beach, CA 92649 7148958401

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg Long Beach CA, 90807 Attn: David Schack Project: **SMASH** Condition of Sample(s) Upon Receipt: Acceptable Date Collected: 9/9/2021 Date Received: 9/10/2021 Date Analyzed: 9/10/2021 Date Reported: 9/11/2021 Project ID: 21039783 Page 7 of 13

Client Sample #		090	9-15			0909-3	L5 Dup			
Sample Location		Rm	410			Rm	n 410			
Sample Volume (L)		150				1	50			
Lab Sample #		210397	/83-027			210397	83-028			
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt spr/m ³ %Ttl					
ascospores	-	-	-	-	1	7	14	-		
basidiospores	1	7	11	-	1	7	14	-		
Cladosporium	3	20	33	-	2	13	29	-		
hyphal elements	2	13	22	-	1	7	14	-		
Penicillium/Aspergillus group	1	7	11	-	1	7	14	-		
Smuts,Periconia,Myxomycetes	2	13	22	-	1	7	14	-		
		Debris I	Rating 3			Debris I	Rating 3			
Analytical Sensitivity	Ar	Analytical Sensitivity: 7 spr/m ³ Analytical Sensitivity: 7 spr/m						/m ³		
Comments										
Total *See Footnotes	9	60	~100%	-	7	47	~100%	-		

Client Sample #		090	9-16	0909-16 Dup					
Sample Location		Rm 480				Rm 480			
Sample Volume (L)		1	50		150				
Lab Sample #		210397	/83-029		21039783-030				
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/O	
Alternaria	1	7	17	-	-	-	-	-	
ascospores	1	7	17	-	2	13	25	-	
basidiospores	1	7	17	-	2	13	25	-	
Cladosporium	-	-	-	-	3	20	38	-	
hyphal elements	1	7	17	-	1	7	13	-	
Penicillium/Aspergillus group	2	13	33	-	-	-	-	-	
		Debris I	Rating 3			Debris I	Rating 3		
Analytical Sensitivity	Ar	Analytical Sensitivity: 7 spr/m ³				Analytical Sensitivity: 7 spr/m ³			
Comments									
Total *See Footnotes	6	40	~100%	-	8	53	~100%	-	

15061 Springdale St Suite 111 Huntington Beach, CA 92649 7148958401

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg Long Beach CA, 90807 Attn: David Schack Project: **SMASH** Condition of Sample(s) Upon Receipt: Acceptable Date Collected: 9/9/2021 Date Received: 9/10/2021 Date Analyzed: 9/10/2021 Date Reported: 9/11/2021 Project ID: 21039783 Page 8 of 13

Client Sample #		0909-17				0909-17 Dup			
Sample Location		Rm	460		Rm 460				
Sample Volume (L)		150				150			
Lab Sample #		210397	/83-031			210397	/83-032		
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/O	
basidiospores	-	-	-	-	1	7	10	-	
Cladosporium	1	7	13	-	4	27	40	-	
hyphal elements	1	7	13	-	1	7	10	-	
Penicillium/Aspergillus group	-	-	-	-	3	20	30	-	
Smuts,Periconia,Myxomycetes	6	40	75	-	1	7	10	-	
		Debris I	Rating 3		Debris I	Rating 3			
Analytical Sensitivity	An	Analytical Sensitivity: 7 spr/m ³				alytical Sens	itivity: 7 spr/	′m ³	
Comments									
Total *See Footnotes	8	53	~100%	-	10	67	~100%	-	

Client Sample #		0909-18				0909-18 Dup			
Sample Location		Rm 100				Rm 100			
Sample Volume (L)		150				150			
Lab Sample #		21039783-033			21039783-034				
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/O	
basidiospores	-	-	-	-	1	7	8	-	
Cladosporium	5	33	56	-	6	40	50	-	
hyphal elements	1	7	11	-	1	7	8	-	
Penicillium/Aspergillus group	3	20	33	-	4	27	33	-	
		Debris	Rating 2			Debris I	Rating 2	•	
Analytical Sensitivity	Ar	Analytical Sensitivity: 7 spr/m ³				Analytical Sensitivity: 7 spr/m ³			
Comments									
Total *See Footnotes	9	60	~100%	-	12	80	~100%	-	

15061 Springdale St Suite 111 Huntington Beach, CA 92649 7148958401

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg Long Beach CA, 90807 Attn: David Schack Project: **SMASH** Condition of Sample(s) Upon Receipt: Acceptable Date Collected: 9/9/2021 Date Received: 9/10/2021 Date Analyzed: 9/10/2021 Date Reported: 9/11/2021 Project ID: 21039783 Page 9 of 13

Client Sample #		090	9-19	0909-19 Dup				
Sample Location		Rm	105		Rm 105			
Sample Volume (L)		1	50		150			
Lab Sample #		210397	/83-035		21039783-036			
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/O
Alternaria	-	-	-	-	1	7	8	-
ascospores	-	-	-	-	1	7	8	-
basidiospores	-	-	-	-	1	7	8	-
Cladosporium	3	20	38	-	4	27	33	-
hyphal elements	1	7	13	-	1	7	8	-
Penicillium/Aspergillus group	3	20	38	-	3	20	25	-
Smuts, Periconia, Myxomycetes	1	7	13	-	1	7	8	-
		Debris I	Rating 2			Debris I	Rating 2	
Analytical Sensitivity	Ar	alytical Sens	itivity: 7 spr/	m ³	An	alytical Sens	itivity: 7 spr/	′m ³
Comments								
Total *See Footnotes	8	53	~100%	-	12	80	~100%	-

Client Sample #: CB-1

Sample Location: SW of Rm 615, Window Sill

Test: 1051 Surface - Qualitative Direct Microscopic Exam SOP 3.7

Results:	Observation
Occasional Botrytis-like spores seen	1-5 per cover slip
Occasional Cladosporium spores seen	1-5 per cover slip
Occasional hyphal elements parts seen	1-5 per cover slip

Debris Rating: 1

Client Sample #: CB-2 Sample Location: SE Cabinet of Rm 615	Lab Sample #: 21039783-038
Test: 1051 Surface - Qualitative Direct Microscopic Exam SOP 3.7	
Results:	Observation
Occasional Alternaria spores seen	1-5 per cover slip
Few Cladosporium spores seen	5 per cover slip
Occasional Cladosporium conidiophores seen	1-5 per cover slip
Occasional Cladosporium hyphal elements seen	1-5 per cover slip
Occasional Ganoderma spores seen	1-5 per cover slip
Occasional Penicillium/Aspergillus group spores seen	1-5 per cover slip
Occasional Pithomyces spores seen	1-5 per cover slip
Few Smuts,Periconia,Myxomycetes spores seen	5 per cover slip
Occasional ascospores spores seen	1-5 per cover slip
Occasional hyphal elements parts seen	1-5 per cover slip

Debris Rating: 2

Lab Sample #: 21039783-037

15061 Springdale St Suite 111 Huntington Beach, CA 92649 7148958401

9/9/2021

9/10/2021

9/10/2021 9/11/2021

21039783

Page 10 of 13

Alta Environmental, an NV5 Inc.	Date Collected:
3777 Long Beach Blvd., Annex Bldg	Date Received:
Long Beach CA, 90807	Date Analyzed:
Attn: David Schack	Date Reported:
Project: SMASH	Project ID:
Condition of Sample(s) Upon Receipt: Acceptable	

Client Sample #:	CB-3
Sample Location:	North HVAC Closet Wall (N) of Rm 615

Test: 1051 Surface - Qualitative Direct Microscopic Exam SOP 3.7

Results:	Observation
Few Alternaria spores seen	5 per cover slip
Occasional Chaetomium spores seen	1-5 per cover slip
Few Cladosporium spores seen	5 per cover slip
Few Drechslera/Bipolaris group spores seen	5 per cover slip
Occasional Epicoccum spores seen	1-5 per cover slip
Occasional Penicillium/Aspergillus group spores seen	1-5 per cover slip
Occasional Pithomyces spores seen	1-5 per cover slip
Occasional Rusts spores seen	1-5 per cover slip
Few Smuts,Periconia,Myxomycetes spores seen	5 per cover slip
Few ascospores spores seen	5 per cover slip
Occasional basidiospores spores seen	1-5 per cover slip
Few hyphal elements parts seen	5 per cover slip

Debris Rating: 3

Client Sample #:	CB-4
Sample Location:	West Window Sill of Rm 560

Test: 1051 Surface - Qualitative Direct Microscopic Exam SOP 3.7

Results:	Observation
Few Alternaria spores seen	5 per cover slip
Few Cladosporium spores seen	5 per cover slip
Occasional Penicillium/Aspergillus group spores seen	1-5 per cover slip
Few Smuts,Periconia,Myxomycetes spores seen	5 per cover slip
Occasional Stemphylium spores seen	1-5 per cover slip
Occasional ascospores spores seen	1-5 per cover slip
Few hyphal elements parts seen	5 per cover slip

Debris Rating: 3

Lab Sample #: 21039783-039

Lab Sample #: 21039783-040

15061 Springdale St Suite 111 Huntington Beach, CA 92649 7148958401

9/9/2021

9/10/2021

9/10/2021

9/11/2021

21039783

Page 11 of 13

Client Sample #:	CB-5
Sample Location:	East Wall of Rm 560

Test: 1051 Surface - Qualitative Direct Microscopic Exam SOP 3.7

Results:	Observation
Occasional Alternaria spores seen	1-5 per cover slip
Few Cladosporium spores seen	5 per cover slip
Occasional Curvularia spores seen	1-5 per cover slip
Occasional Drechslera/Bipolaris group spores seen	1-5 per cover slip
Occasional Epicoccum spores seen	1-5 per cover slip
Occasional Pithomyces spores seen	1-5 per cover slip
Occasional Rusts spores seen	1-5 per cover slip
Few Smuts,Periconia,Myxomycetes spores seen	5 per cover slip
Occasional ascospores spores seen	1-5 per cover slip
Occasional basidiospores spores seen	1-5 per cover slip
Few hyphal elements parts seen	5 per cover slip

Debris Rating: 3

Client Sample #: CB-6 Sample Location: North Cabinets of Rm 560

Test: 1051 Surface - Qualitative Direct Microscopic Exam SOP 3.7

Results:	Observation
Few Alternaria spores seen	5 per cover slip
Few Cladosporium spores seen	5 per cover slip
Occasional Cladosporium hyphal elements seen	1-5 per cover slip
Occasional Curvularia spores seen	1-5 per cover slip
Few Drechslera/Bipolaris group spores seen	5 per cover slip
Occasional Epicoccum spores seen	1-5 per cover slip
Occasional Ganoderma spores seen	1-5 per cover slip
Occasional Pestalotiopsis group spores seen	1-5 per cover slip
Occasional Pithomyces spores seen	1-5 per cover slip
Few Smuts,Periconia,Myxomycetes spores seen	5 per cover slip
Occasional Ulocladium spores seen	1-5 per cover slip
Occasional ascospores spores seen	1-5 per cover slip
Occasional basidiospores spores seen	1-5 per cover slip
Few hyphal elements parts seen	5 per cover slip
Debris Rating: 3	

Lab Sample #: 21039783-041

Lab Sample #: 21039783-042

Date Collected:

Date Received:

Date Analyzed:

Date Reported:

Project ID:

Alta Environmental, an NV5 Inc.	Date Collected:	9/9/2021
3777 Long Beach Blvd., Annex Bldg	Date Received:	9/10/2021
Long Beach CA, 90807	Date Analyzed:	9/10/2021
Attn: David Schack	Date Reported:	9/11/2021
Project: SMASH	Project ID:	21039783
Condition of Sample(s) Upon Receipt: Acceptable		Page 12 of 13

Signature Page

Aerobiology Laboratory Associates, Inc. shall be responsible for all the information provided in the report, except when information is provided by the customer. Data provided by a customer can affect the validity of results and shall be clearly identified. Results apply to the samples as received. Aerobiology Laboratory Associates, Inc. is not responsible for the sampling activity, such as air and water volume, area and mass unit. The report shall not be reproduced except in full without the approval of the laboratory to ensure that parts of a report are not taken out of context. Data interpretation of this report will be the client responsibility based on their sampling.

1. The results in this report are related to this project and these samples only.

2. Results in this report are intended for the Aerobiology Laboratory Associates, Inc. client listed above and cannot be discussed with anyone outside of that given company without written authorization.

3. Minimum Reporting Limits (MRL) for BULKS, DUSTS, SWABS, and WATER samples are a calculation based on 1 raw count, the sample size and the dilution plate on which organism was counted. Results are a compilation of counts taken from multiple dilutions and multiple medias.

4. Raw count is the total number of colonies identified on a given sample, without any calculations performed based on air volume, surface area, water volume, or weight.

5. Total count is a calculated value based on the type of sample submitted, the raw count, and the calculation related to the volume, weight or surface area.

Synam 5. Poling

Suzanne Blevins Laboratory Director

© 2021 Aerobiology Laboratory Associates, Inc. All rights reserved.

Alta Environmental, an NV5 Inc.	Date Collected:	9/9/2021
3777 Long Beach Blvd., Annex Bldg	Date Received:	9/10/2021
Long Beach CA, 90807	Date Analyzed:	9/10/2021
Attn: David Schack	Date Reported:	9/11/2021
Project: SMASH Condition of Sample(s) Upon Receipt: Acceptable	Project ID:	21039783 Page 13 of 13

Footnotes and Additional Report Information

Debris Rating Table

1	Minimal (<5%) particulate present	Reported values are minimally affected by particulate load.
2	5% to 25% of the trace occluded with particulate	Negative bias is expected. The degree of bias increases directly with the percent of the trace that is occluded.
3	26% to 75% of the trace occluded with particulate	Negative bias is expected. The degree of bias increases directly with the percent of the trace that is occluded.
4	75% to 90% of the trace occluded with particulate	Negative bias is expected. The degree of bias increases directly with the percent of the trace that is occluded.
5	Greater than 90% of the trace occluded with particulate	Quantification not possible due to large negative bias. A new sample should be collected at a shorter time interval or other measures taken to reduce particulate load.

Aerobiology Laboratory Associates, Inc. shall be responsible for all the information provided in the report, except when information is provided by the customer. Data provided by a customer can affect the validity of results and shall be clearly identified. Results apply to the samples as received. Aerobiology Laboratory Associates, Inc. is not responsible for the sampling activity, such as air and water volume, area, and mass unit. The report shall not be reproduced except in full without the approval of the laboratory to ensure that parts of a report are not taken out of context. Data interpretation of this report will be the client responsibility based on their sampling.

1. Penicillium/Aspergillus group spores are characterized by their small size, round to ovoid shape, being unicellular, and usually colorless to lightly pigmented. There are numerous genera of fungi whose spore morphology is similar to that of the Penicillium/Aspergillus type. Two common examples would be Paecilomyces and Acremonium. Although the majority of spores placed in this group are Penicillium, Aspergillus, or a combination of both. Keep in mind that these are not the only two possibilities.

2. Ascospores are sexually produced fungal spores formed within an ascus. An ascus is a sac-like structure designed to discharge the ascospores into the environment, e.g. Ascobolus.

3. Basidiospores are typically blown indoors from outdoors and rarely have an indoor source. However, in certain situations a high basidiospore count indoors may be indicative of a wood decay problem or wet soil.

4. The colorless group contains colorless spores which were unidentifiable to a specific genus. Examples of this group include Acremonium, Aphanocladium, Beauveria, Chrysosporium, Engyodontium microconidia, yeast, some arthrospores, as well as many others.

5. Hyphae are the vegetative mode of fungi. Hyphal elements are fragments of individual Hyphae. They can break apart and become airborne much like spores and are potentially allergenic. A mass of hyphal elements is termed the mycelium. Hyphae in high concentration may be indicative of colonization.

6. Dash (-) in this report, under raw count column means 'not detected (ND)'; otherwise 'not applicable' (NA).

7. The positive-hole correction factor is a statistical tool which calculates a probable count from the raw count, taking into consideration that multiple particles can impact on the same hole; for this reason the sum of the calculated counts may be less than the positive hole corrected total.

8. Due to rounding totals may not equal 100%.

9. Analytical Sensitivity for each spores is different for Non-viable sample when the spores are read at different percentage. Analytical Sensitivity is calculated as spr/m³ divided by raw count. spr/m³ = raw counts x (100/ % read) x (1000/Sample volume). If Analytical Sensitivity is 13 spr/m³ at 100% read, Analytical Sensitivity at 50% read would be 27 spr/m³, which is 2 times higher. Analytical Sensitivity provided on the report is based on an assumed 100% of the trace being analyzed.

10. Minimum Reporting Limits (MRL) for BULKS, DUSTS, SWABS, and WATER samples are a calculation based on the sample size and the dilution plate on which the organism was counted. Results are a compilation of counts taken from multiple dilutions and multiple medias. This means that every genus of fungi or bacteria recovered can be counted on the plate on which it is best represented.

11. If the final quantitative result is corrected for contamination based on the blank, the blank correction is stated in the sample comments section of the report.

12. The results in this report are related to this project and these samples only.

13. For samples with an air volume of < 100L, the number of significant figures in the result should be considered (2) two. For samples with air volumes between 100-999L, the number of significant figures in the result should considered (3) three. For example, a sample with a result of $55,443 \text{ spr/m}^3$ from a 75L sample using significant figures should be considered 55,000. The same result of $55,443 \text{ from a } 150L \text{ sample using significant figures should be considered } 55,400 \text{ spr/m}^3$.

14. If the In/Out ratio is greater than 100 times it is indicated >100/1, rather than showing the real value.

Terminology Used in Direct Exam Reporting

Conidiophores are a type of modified hyphae from which spores are born. When seen on a surface sample in moderate to numerous concentrations they may be indicative of fungal growth.

Synam 5. Bluing

Suzanne Blevins Laboratory Director © 2021 Aerobiology Laboratory Associates, Inc. All rights reserved.

Aerol	SOCIATES	iy S Labo s, Incore Analytical® Labora	PORATED		ab Use: 39783	o elite	אענאט	ge of	229
erobiology (Client	Alta E	nv.			AZ, CA, CO, FL, GA, IL, VA, NJ	AZ, CA, CO, VA	CA-218951 CO-1920 NJ-102747 GA-1630 FL-228303 L-2322	683 063
Field Contact	Sim	Byers			Collected By/Dat	te: 9/9/21	Relinquished By/Date:	9%	50
Reporting Address					Relinquished By/D	ate:	Received By/Date:	0/21-9-9	24
Billing 3	7.77	Cory Be Reach e	ach Blu	el	Sampler Type	Andersen SAS	SampleAire AeroTrap	Other BioCulture	
Phone/Fax	Vones	isour , c	A 10207		PO#/Job#:	a den de la constant	1		
Reporting 7	im.B.	yers @ NUS	·Com		Project Name:	SMASH			
Email (s) Routine 2	4 Hour	Same Day	4 Hour	2 Hour	Notes:	PI	around		-
	CATIO	ZIP CODE			CC Info: Co.	and the second se	icril ON	IN Cara	-
	_			-			RATT EN	Total Volume/A	
Sample N 9001 - 1	0.	Test Code			Sample L				rea
	gue	1054	Outsi	de la	day Sc	0,100,	200	150	
-2	NUP	1		D	4 GIS			1	
-7				RM 60S					
-31	Dup								-
-41	Dup		RM 665					1	
-3	Rup			R	M 66	0			
	Nop			R					
*7	10p	/	11						-
~71	Dup			1	24200	2			
-0	pup				RM 25	Z			
-9					RM 25	: 8			
-10	Dup			1			÷	+ /	-
~10 !	Dup		admanification and a state		th so				_
-11	Dup		-	1	2M SC	05			
-13	Dun			P	M 56	0			
								0	
~ 啓		=				and the second second			0.249
-14	DUP			RA	1 400				
-15	Dun	Y		RI	M410	2		V	
(1054) Dir	ect, Non-	viable Spore Trap			1015	Culture - WATE			
		itative- Swab/Tap itative- Bulk	e		1017 Culture - SWAB Legionella 1010 WATER - Potable - E. coli/total col			liforms	
1005 AIR	R Culture	- Bacterial Count - Fungal Count w			1012 1028	SWAB - E. coli/t		In the stand	
1006 SW	AB Cultu	re - Bacterial Co	unt w/ ID's		2056	ero/tecal colitorms)			
		re - Fungal Coun re - Bacterial Cou			3001 3002	ASBESTOS - PO ASBESTOS - PL			
	LK Cultur	e - Fungal Count ture - Bacterial C	w/ID's		3003 3004		article characterization	on	

Washington, D.C. - Atlanta, GA - Denver, CO - Phoenix, AZ - Cherry Hill, NJ - Los Angeles, CA - Ft. Lauderdale, FL - Chicago, IL (877) 648-9150 - (770) 947-2828 - (303) 232-3746 - (602) 441-3700 - (856) 486-1177 - (714) 895-8401 - (954) 451-3725 - (630) 403-6822

		ASSOCIATE	Gy Lab Incon Analytical® Labor	RPORATED	L	ab Use:	elite	NVLAD	ge of VA-102977 AZ-210 CA-218951 CO-19:	
ſ	Aerobiolo	gy Client	ALTA	Env			AZ, CA, CO, FL, GA, IL, VA, NJ	AZ, CA, CO, VA	CA-218951 CO-192 NJ-102747 GA-163 FL-228303 L-2322	
1	Field Cente		//	00.0		Collected By/Dat	e:	Relinquished By/Date:	ARCHITECT OF REAL PROPERTY AND INCOME.	
ł	Field Conta Reportir					Relinquished By/Da	ate:	Received By/Date:		
ł	Addres Billir					Sampler	Andersen	SampleAire	Other	
ł	Addres Phone/Fa	s				Type PO#/Job#:	SAS	AeroTrap	BioCulture	
ł	Reportir	Ig				Project Name:	SMASH	1		
ł	Email (s	24 Hour	Same Day	4 <u>Hou</u> r	2 Hour	Notes:	ZI TA	7		
							phr IA			
L	SAMPLIN	G LOCATIO	N ZIP CODE			CC Info:				
ſ	Samp		Test Code			Sample L	ocation		Total Volume/A	
50	909	-16	1054			RML	180		150	
1	7	-16 Dup	10-1	~ ~ ~	-	Neho 1	10.00		K	
2		-17 Dup				RFI 4	160	-		
3)	-18 000				RM 10	00			
-]	.Lr	-10 1	V	5. 	1	RMID	5		1	
4		-19 pup	1051	SW of	RM	GIS, L	indow S	11	XIM	
5	CPS	~ 1	1031	SF (cloi	1.1	of RM			NA	
6	1	~ ~		and an and	1					
-7		-3		North A	MAC	closet h	Iali(N) of	FKM 615		
5 8	1.	-4		west	twinel	ow sil	lof Rt	1 660		
	1	-5		East U	Nall	of RI	4 560			
20	5	-6	V	North	abir	ncts a	A RM :	560	1	
11				inna mees e antidatitutunatita						
12				2		*****	2			
13										
14			··· ·	181 (1913) 2017 - 1913						
15			and an and a second					ana dinangana ang pangana a		
ì	(1054)	Direct, Non	-viable Spore Tra	ар		1015	Culture - WATE	R Legionella		
F	1050		Direct, Qualitative- Swab/Tape			1017	Culture - SWAB Legionella			
ł	1005	AIR Culture	Direct. Qualitative- Bulk IR Culture - Bacterial Count w/ ID's			1010 1012	WATER - Potable - E. coli/total coliforms SWAB - E. coli/total coliforms			
	1030 1006	AIR Culture	AIR Culture - Fungal Count w/ ID's			1028	028 SWAB - Sewage Screen (E. coli/Entero/fecal co			
ŀ	1006		ure - Bacterial Co ure - Fungal Cou		-	2056 WATER - Heterotrophic Plate Count 3001 ASBESTOS - Point count				
- L						3002	ASBESTOS - PL			
	1008 1033		re - Bacterial Co re - Fungal Coun			3002		article characterizatio		

Washington, D.C. - Atlanta, GA - Denver, CO - Phoenix, AZ - Cherry Hill, NJ - Los Angeles, CA - Ft. Lauderdale, FL - Chicago, IL (877) 648-9150 - (770) 947-2828 - (303) 232-3746 - (602) 441-3700 - (856) 486-1177 - (714) 895-8401 - (954) 451-3725 - (630) 403-6822

Revision 14

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg Long Beach CA, 90807 Attn: David Schack Project: **SMASH** Condition of Sample(s) Upon Receipt: Acceptable

Date Collected:	9/11/2021
Date Received:	9/11/2021
Date Analyzed:	9/11/2021
Date Reported:	9/11/2021
Project ID:	21039915
	Page 1 of 6

Client Sample #		091	1- 1		0911- 1 Dup				
Sample Location	2nd Floor	Hall Betwee	n 500's and 2	2nd Floor Hall Between 500's and 200's Bldg					
Sample Volume (L)		150				1	50		
Lab Sample #		21039915-001 21039915-002					15-002		
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/O	
Alternaria	-	-	-	-	1	7	<1	-	
ascospores	13	87	7	-	9	60	6	-	
basidiospores	17	113	9	-	18	120	12	-	
Chaetomium	1	7	<1	-	1	7	<1	-	
Cladosporium	64	427	35	-	79	527	51	-	
Drechslera/Bipolaris group	1	7	<1	-	1	7	<1	-	
hyphal elements	6	40	3	-	7	47	5	-	
Penicillium/Aspergillus group	65	433	36	-	30	200	19	-	
Smuts,Periconia,Myxomycetes	16	107	9	-	8	53	5	-	
		Debris I	Rating 3		Debris Rating 3				
Analytical Sensitivity	Ar	Analytical Sensitivity: 7 spr/m ³				alytical Sens	itivity: 7 spr/	m ³	
Comments									
Total *See Footnotes	183	1,220	~100%	-	154	1,027	~100%	-	

Client Sample #		091	1- 2		0911- 2 Dup					
Sample Location		SE of F	Rm 555		SE of Rm 555					
Sample Volume (L)		150				150				
Lab Sample #		21039915-003				210399	15-004			
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/O		
ascospores	1	7	6	-	1	7	11	-		
basidiospores	-	-	-	-	1	7	11	-		
Cladosporium	3	20	19	-	1	7	11	-		
hyphal elements	5	33	31	-	2	13	22	-		
Penicillium/Aspergillus group	5	33	31	-	2	13	22	-		
Smuts,Periconia,Myxomycetes	2	13	12	-	2	13	22	-		
		Debris F	Rating 2	Debris Rating 2						
Analytical Sensitivity	Ar	nalytical Sens	itivity: 7 spr/	m ³	Ar	alytical Sens	itivity: 7 spr/	m ³		
Comments										
Total *See Footnotes	16	107	~100%	-	9	60	~100%	-		

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg Long Beach CA, 90807 Attn: David Schack Project: **SMASH** Condition of Sample(s) Upon Receipt: Acceptable
 Date Collected:
 9/11/2021

 Date Received:
 9/11/2021

 Date Analyzed:
 9/11/2021

 Date Reported:
 9/11/2021

 Project ID:
 21039915

 Page 2 of 6

Client Sample #		091	1-3			0911-	3 Dup		
Sample Location		South Center	er of Rm 665		South Center of Rm 665				
Sample Volume (L)		150				15	50		
Lab Sample #		21039915-005				210399	15-006		
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/O	
ascospores	3	20	6	-	2	13	5	-	
basidiospores	5	33	10	-	1	7	3	-	
Cladosporium	14	93	27	-	10	67	27	-	
hyphal elements	7	47	13	-	4	27	11	-	
Penicillium/Aspergillus group	5	33	10	-	3	20	8	-	
Smuts,Periconia,Myxomycetes	18	120	35	-	16	107	43	-	
Stemphylium	-	-	-	-	1	7	3	-	
		Debris I	Rating 4		Debris Rating 4				
Analytical Sensitivity	Ar	Analytical Sensitivity: 7 spr/m ³				nalytical Sens	itivity: 7 spr/	′m³	
Comments									
Total *See Footnotes	52	347	~100%	_	37	247	~100%	-	

Client Sample #		091	1-4			0911-	4 Dup			
Sample Location		Rm	605		Rm 605					
Sample Volume (L)		150				150				
Lab Sample #		21039915-007				210399	15-008			
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/O		
ascospores	2	13	5	-	1	7	5	-		
basidiospores	1	7	3	-	2	13	11	-		
Cladosporium	10	67	27	-	6	40	32	-		
hyphal elements	4	27	11	-	1	7	5	-		
Penicillium/Aspergillus group	3	20	8	-	4	27	21	-		
Smuts,Periconia,Myxomycetes	16	107	43	-	5	33	26	-		
Stemphylium	1	7	3	-	-	-	-	-		
		Debris	Rating 3		Debris Rating 2					
Analytical Sensitivity	Ar	alytical Sens	sitivity: 7 spr/	m ³	Ar	alytical Sens	itivity: 7 spr	′m³		
Comments										
Total *See Footnotes	37	247	~100%	-	19	127	~100%	-		

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg Long Beach CA, 90807 Attn: David Schack Project: **SMASH** Condition of Sample(s) Upon Receipt: Acceptable
 Date Collected:
 9/11/2021

 Date Received:
 9/11/2021

 Date Analyzed:
 9/11/2021

 Date Reported:
 9/11/2021

 Project ID:
 21039915

 Page 3 of 6

Client Sample #		091	1- 5		0911- 5 Dup					
Sample Location		Rm 660				Rm 660				
Sample Volume (L)		150				1	50			
Lab Sample #		21039915-009				210399	15-010			
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/C		
basidiospores	1	7	14	-	1	7	8	-		
Cladosporium	1	7	14	-	7	47	58	-		
hyphal elements	3	20	43	-	1	7	8	-		
Penicillium/Aspergillus group	1	7	14	-	1	7	8	-		
Smuts,Periconia,Myxomycetes	1	7	14	-	2	13	17	-		
		Debris F	Rating 3	Debris Rating 3						
Analytical Sensitivity	Ar	nalytical Sens	itivity: 7 spr/r	m ³	Ar	alytical Sens	itivity: 7 spr/	′m³		
Comments										
Total *See Footnotes	7	47	~100%	-	12	80	~100%	-		

Client Sample #		091	1- 6		0911- 6 Dup					
Sample Location		Outside	Rm 610		Outside Rm 610					
Sample Volume (L)		150				150				
Lab Sample #		21039915-011				21039915-012				
Spore Identification	RawCt	spr/m ³	%Ttl	I/O	RawCt	spr/m ³	%Ttl	I/O		
Alternaria	1	7	<1	-	1	7	<1	-		
ascospores	5	33	2	-	6	40	2	-		
basidiospores	10	67	4	-	10	67	3	-		
Chaetomium	-	-	-	-	1	7	<1	-		
Cladosporium	173	1,153	76	-	146	973	37	-		
Drechslera/Bipolaris group	-	-	-	-	1	7	<1	-		
Ganoderma	2	13	<1	-	3	20	<1	-		
hyphal elements	11	73	5	-	8	53	2	-		
Penicillium/Aspergillus group	3	20	1	-	198	1,320	50	-		
Peronospora	3	20	1	-	3	20	<1	_		
Rusts	1	7	<1	-	1	7	<1	-		
Smuts,Periconia,Myxomycetes	18	120	8	-	20	133	5	-		
		Debris I	Rating 4			Debris I	Rating 8			
Analytical Sensitivity	Ar	Analytical Sensitivity: 7 spr/m ³				alytical Sens	itivity: 7 spr/	m ³		
Comments										
Total *See Footnotes	227	1,513	~100%	-	398	2,653	~100%	-		

15061 Springdale St Suite 111 Huntington Beach, CA 92649 7148958401

Alta Environmental, an NV5 Inc.
3777 Long Beach Blvd., Annex Bldg
Long Beach CA, 90807
Attn: David Schack
Project: SMASH
Condition of Sample(s) Upon Receipt: Acceptable

 Date Collected:
 9/11/2021

 Date Received:
 9/11/2021

 Date Analyzed:
 9/11/2021

 Date Reported:
 9/11/2021

 Project ID:
 21039915

 Page 4 of 6

Lab Sample #: 21039915-007

Client Sample #: TL - 1 Sample Location: Rm 665 West Cabinets of Class Rm

Test: 1051 Surface - Qualitative Direct Microscopic Exam SOP 3.7: 48hr TAT

Results:	Observation
Few Aspergillus spores seen	5 per cover slip
Few Aspergillus conidiophores seen	5 per cover slip
Few Aspergillus hyphae seen	5 per cover slip
Occasional Cladosporium spores seen	1-5 per cover slip
Occasional Drechslera/Bipolaris group spores seen	1-5 per cover slip
Numerous Scopulariopsis spores seen	3-4 per field (minimum)
Numerous Scopulariopsis conidiophores seen	3-4 per field (minimum)
Numerous Scopulariopsis hyphae seen	3-4 per field (minimum)
Debris Rating: 1	

Alta Environmental, an NV5 Inc. 3777 Long Beach Blvd., Annex Bldg	Date Collected: Date Received:	9/11/2021 9/11/2021
Long Beach CA, 90807	Date Analyzed:	9/11/2021
Attn: David Schack	Date Reported:	9/11/2021
Project: SMASH	Project ID:	21039915
Condition of Sample(s) Upon Receipt: Acceptable		Page 5 of 6

Signature Page

Aerobiology Laboratory Associates, Inc. shall be responsible for all the information provided in the report, except when information is provided by the customer. Data provided by a customer can affect the validity of results and shall be clearly identified. Results apply to the samples as received. Aerobiology Laboratory Associates, Inc. is not responsible for the sampling activity, such as air and water volume, area and mass unit. The report shall not be reproduced except in full without the approval of the laboratory to ensure that parts of a report are not taken out of context. Data interpretation of this report will be the client responsibility based on their sampling.

1. The results in this report are related to this project and these samples only.

2. Results in this report are intended for the Aerobiology Laboratory Associates, Inc. client listed above and cannot be discussed

with anyone outside of that given company without written authorization.

3. Minimum Reporting Limits (MRL) for BULKS, DUSTS, SWABS, and WATER samples are a calculation based on 1 raw count, the sample size and the dilution plate on which organism was counted. Results are a compilation of counts taken from multiple dilutions and multiple medias.

4. Raw count is the total number of colonies identified on a given sample, without any calculations performed based on air volume, surface area, water volume, or weight.

5. Total count is a calculated value based on the type of sample submitted, the raw count, and the calculation related to the volume, weight or surface area.

Synan 5. Polining

Suzanne Blevins Laboratory Director

© 2021 Aerobiology Laboratory Associates, Inc. All rights reserved.

Alta Environmental, an NV5 Inc.	Date Collected:	9/11/2021
3777 Long Beach Blvd., Annex Bldg	Date Received:	9/11/2021
Long Beach CA, 90807	Date Analyzed:	9/11/2021
Attn: David Schack	Date Reported:	9/11/2021
Project: SMASH	Project ID:	21039915
Condition of Sample(s) Upon Receipt: Acceptable		Page 6 of 6

Footnotes and Additional Report Information

Debris Rating Table

	3	
1	Minimal (<5%) particulate present	Reported values are minimally affected by particulate load.
2	5% to 25% of the trace occluded with particulate	Negative bias is expected. The degree of bias increases directly with the percent of the trace that is occluded.
3	26% to 75% of the trace occluded with particulate	Negative bias is expected. The degree of bias increases directly with the percent of the trace that is occluded.
4	/b% to UN% of the trace occluded with particulate	Negative bias is expected. The degree of bias increases directly with the percent of the trace that is occluded.
	Greater than 90% of the trace occluded with particulate	Quantification not possible due to large negative bias. A new sample should be collected at a shorter time interval or other measures taken to reduce particulate load.

Aerobiology Laboratory Associates, Inc. shall be responsible for all the information provided in the report, except when information is provided by the customer. Data provided by a customer can affect the validity of results and shall be clearly identified. Results apply to the samples as received. Aerobiology Laboratory Associates, Inc. is not responsible for the sampling activity, such as air and water volume, area, and mass unit. The report shall not be reproduced except in full without the approval of the laboratory to ensure that parts of a report are not taken out of context. Data interpretation of this report will be the client responsibility based on their sampling.

1. Penicillium/Aspergillus group spores are characterized by their small size, round to ovoid shape, being unicellular, and usually colorless to lightly pigmented. There are numerous genera of fungi whose spore morphology is similar to that of the Penicillium/Aspergillus type. Two common examples would be Paecilomyces and Acremonium. Although the majority of spores placed in this group are Penicillium, Aspergillus, or a combination of both. Keep in mind that these are not the only two possibilities.

2. Ascospores are sexually produced fungal spores formed within an ascus. An ascus is a sac-like structure designed to discharge the ascospores into the environment, e.g. Ascobolus.

3. Basidiospores are typically blown indoors from outdoors and rarely have an indoor source. However, in certain situations a high basidiospore count indoors may be indicative of a wood decay problem or wet soil.

4. The colorless group contains colorless spores which were unidentifiable to a specific genus. Examples of this group include Acremonium, Aphanocladium, Beauveria, Chrysosporium, Engyodontium microconidia, yeast, some arthrospores, as well as many others.

5. Hyphae are the vegetative mode of fungi. Hyphal elements are fragments of individual Hyphae. They can break apart and become airborne much like spores and are potentially allergenic. A mass of hyphal elements is termed the mycelium. Hyphae in high concentration may be indicative of colonization.

6. Dash (-) in this report, under raw count column means 'not detected (ND)'; otherwise 'not applicable' (NA).

7. The positive-hole correction factor is a statistical tool which calculates a probable count from the raw count, taking into consideration that multiple particles can impact on the same hole; for this reason the sum of the calculated counts may be less than the positive hole corrected total.

8. Due to rounding totals may not equal 100%.

9. Analytical Sensitivity for each spores is different for Non-viable sample when the spores are read at different percentage. Analytical Sensitivity is calculated as spr/m³ divided by raw count. spr/m³ = raw counts x (100/ % read) x (1000/Sample volume). If Analytical Sensitivity is 13 spr/m³ at 100% read, Analytical Sensitivity at 50% read would be 27 spr/m³, which is 2 times higher. Analytical Sensitivity provided on the report is based on an assumed 100% of the trace being analyzed.

10. Minimum Reporting Limits (MRL) for BULKS, DUSTS, SWABS, and WATER samples are a calculation based on the sample size and the dilution plate on which the organism was counted. Results are a compilation of counts taken from multiple dilutions and multiple medias. This means that every genus of fungi or bacteria recovered can be counted on the plate on which it is best represented.

11. If the final quantitative result is corrected for contamination based on the blank, the blank correction is stated in the sample comments section of the report.

12. The results in this report are related to this project and these samples only.

13. For samples with an air volume of < 100L, the number of significant figures in the result should be considered (2) two. For samples with air volumes between 100-999L, the number of significant figures in the result should considered (3) three. For example, a sample with a result of 55,443 spr/m³from a 75L sample using significant figures should be considered 55,000. The same result of 55,443 from a 150L sample using significant figures should be considered 55,400 spr/m³

14. If the In/Out ratio is greater than 100 times it is indicated >100/1, rather than showing the real value.

Terminology Used in Direct Exam Reporting

Conidiophores are a type of modified hyphae from which spores are born. When seen on a surface sample in moderate to numerous concentrations they may be indicative of fungal growth.

Synne 5. Bluing

Suzanne Blevins Laboratory Director © 2021 Aerobiology Laboratory Associates, Inc. All rights reserved.

J	A Pace	s, ≦∠ INCOF Analytical® Labor	4	21039915	ELITE AZ, CA, CO, FL,	AZ, CA, CO, VA	VA - 102977 AZ-210229 CA-218951 CO - 192683
Aerobiolog	y Client	Alta			GA, IL, VA, NJ		NJ-102747 GA-163063 FL-228303 L-232279
Field Contact	Davic	1 Schoick		Collected By/Da	te: 9-11-21 413 9-11-21	Relinquished By/Date:	
Reporting Address				Relinquished By/E	Date: 20 9/4/21	Received By/Date:	a up liaro
Billing	3777	Long Be	4 questo 7	Sampler	Andersen	SampleAire	Other
Address	lang	Brach Cl	4 90807	PO#/Job#:	SAS	AeroTrap	BioCulture
Phone/Fax Reporting		1		Project Name	· C1. 101		
Email (s)			And and a second se		SMASH	and the second s	
Routine	24 Hour	Same Day	4 Hour 2 Ho	ur Notes:	Shr 7f	Deten	amples ogil-2+
SAMPLING	LOCATIO	N ZIP CODE		CC Info: Co	urbany, Ber	erril	
Somple	No	Test Code		Sample			Total Volume/Area
Sample	1		2nd Floor Ha			co's Bide	
0911 -	1 Dup	iosy			0000 40	1.109	150
-	200		SE of PM	1555			
-	ZDUP		South Cente	- OF PM	668		
1 -	JPUP	V	DOAT CENT	er pri			V
			211665 C	Phoos creat cabinets			
T	1 . 1	1001	DMC65 W	rest (eb)	nets of 1	LASS R KI	
	1-1	1081	RMGGS west cobinets of Classim				
0911.	74	1654	1751	GOS			150
0911.	= 4Dop	1039	1219	603			100
13	SDUD	+	1 DM	660			
-	6 9		Mitside	RM Gle	0		L
	6 DUP	-	VUISIAE	1-11 610	/		
	_			1	6		- C
		-	14		-		
and the second se		-		En altra			15
							1000
		1					
1054)		viable Spore Tra		1015	Culture - WATER		
1051		litative- Swab/Ta litative- Bulk	pe	1017	Culture - SWAB	Legionella e - E. coli/total colifo	orms
1005	AIR Culture	- Bacterial Cour		1012	SWAB - E. coli/to	otal coliforms	
1030 1006		- Fungal Count v ure - Bacterial Co		1028 2056		Screen (E. coli/Ente	
1031	SWAB Cult	ure - Fungal Cou	nt w/ ID's	3001	ASBESTOS - Po	int count	
1008 1033		re - Bacterial Co re - Fungal Cour		t w/ ID's 3002 ASBESTOS - PLM Analysis			on
1007		ulture - Bacterial		3004	ASBESTOS - PC		

Washington, D.C. - Atlanta, GA - Denver, CO - Phoenix, AZ - Cherry Hill, NJ - Los Angeles, CA - Ft. Lauderdale, FL - Chicago, IL (877) 648-9150 - (770) 947-2828 - (303) 232-3746 - (602) 441-3700 - (856) 486-1177 - (714) 895-8401 - (954) 451-3725 - (630) 403-6822

Revision 14

11007 FOREST PLACE Santa FE Springs, ca 90670 WWW.Jonesenv.com

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Client Address:	Alta Environmental/ NV5 3777 Long Beach Blvd Long Beach, CA	Report date: Jones Ref. No.: Client Ref. No.:	10/6/2021 ST-18338 444721-0010226.00
Attn:	David Schack	Date Sampled:	10/1/2021
		Date Received:	10/4/2021
Project:	Smash/Muir	Date Analyzed:	10/6/2021
Project Address:	2526 6th St	Physical State:	Air
	Santa Monica, CA 90405		

ANALYSES REQUESTED

1. EPA TO-15 – Volatile Organics by GC/MS

Analytical – Air samples were analyzed using EPA Method TO-15. Instrument Continuing Calibration Verification (CCV) and Instrument Blanks were analyzed every 24 hours as prescribed by the method. In addition, a Continuing Calibration Verification Duplicate (CCVD) was analyzed with each batch of Soil Gas samples.

Approval:

Annalise O'Toole Mobile Lab Manager

11007 FOREST PLACE Santa Fe Springs, ca 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Client Address:	Alta Environmental/ NV5 3777 Long Beach Blvd Long Beach, CA	Report date: Jones Ref. No.: Client Ref. No.:	10/6/2021 ST-18338 444721-0010226.00
Attn:	David Schack	Date Sampled:	10/1/2021
		Date Received:	10/4/2021
Project:	Smash/Muir	Date Analyzed:	10/6/2021
Project Address:	2526 6th St	Physical State:	Air
	Santa Monica, CA 90405		

EPA TO-15 - Volatile Organics by GC/MS

<u>Sample ID:</u>	Ambient - J	555 - J		
Jones ID:	ST-183301- 02	ST-18338-02	Reporting Limit	<u>Units</u>
Analytes:				2
Acetone	10.4*	11.9*	0.50	$\mu g/m^3$
Acrolein	1.49	2.00	0.10	$\mu g/m^3$
Benzene	0.66	0.51	0.10	$\mu g/m^3$
Bromodichloromethane	ND	ND	0.10	$\mu g/m^3$
Bromoform	ND	ND	0.10	$\mu g/m^3$
1,3-Butadiene	ND	ND	0.10	$\mu g/m^3$
2-Butanone (MEK)	ND	ND	0.50	$\mu g/m^3$
n-Butylbenzene	ND	ND	0.10	$\mu g/m^3$
sec-Butylbenzene	ND	ND	0.10	$\mu g/m^3$
tert-Butylbenzene	ND	ND	0.10	$\mu g/m^3$
Carbon tetrachloride	0.80	0.75	0.10	$\mu g/m^{3}$
Chlorobenzene	ND	ND	0.10	$\mu g/m^{3}$
Chloroform	0.37	0.37	0.10	$\mu g/m^3$
Carbon Disulfide	ND	0.12	0.10	$\mu g/m^3$
Cyclohexane	0.39	0.30	0.10	µg/m³
Dibromochloromethane	ND	ND	0.10	$\mu g/m^3$
1,2-Dibromoethane (EDB)	ND	ND	0.50	$\mu g/m^3$
1,4-Dioxane	ND	ND	0.10	µg/m³
1,2- Dichlorobenzene	ND	ND	0.10	$\mu g/m^3$
1,3-Dichlorobenzene	ND	ND	0.10	μg/m ³
1,4-Dichlorobenzene	ND	ND	0.10	$\mu g/m^3$
1,1-Dichloroethane	ND	ND	0.10	$\mu g/m^3$
1,2-Dichloroethane	ND	ND	0.10	$\mu g/m^3$
1,1-Dichloroethene	ND	ND	0.10	$\mu g/m^{3}$
cis-1,2-Dichloroethene	ND	ND	0.10	$\mu g/m^{3}$
trans-1,2-Dichloroethene	ND	ND	0.10	$\mu g/m^3$

EPA TO-15 – Volatile Organics by GC/MS

<u>Sample ID:</u>	Ambient - J	555 - J		
Jones ID:	ST-183301- 02	ST-18338-02	<u>Reporting Limit</u>	<u>Units</u>
Analytes:				
Ethyl Acetate	ND	ND	0.50	$\mu g/m^3$
Ethylbenzene	0.21	0.18	0.10	$\mu g/m^3$
Freon 11	1.09	0.96	0.10	µg/m ³
Freon 12	2.33	2.11	0.10	$\mu g/m^3$
Freon 113	0.51	0.44	0.10	$\mu g/m^3$
Freon 114	ND	ND	0.10	$\mu g/m^3$
n-Heptane	ND	ND	1.00	µg/m ³
n-Hexane	6.88	4.79	1.00	$\mu g/m^3$
2-Hexanone (MBK)	ND	1.43	0.50	$\mu g/m^3$
Isopropanol	6.16	4.47	0.50	µg/m ³
Isopropylbenzene	ND	ND	0.10	$\mu g/m^3$
4-Isopropyltoluene	0.11	0.11	0.10	$\mu g/m^3$
4-Methyl-2-pentanone (MIBK)	ND	ND	0.50	$\mu g/m^3$
Methylene chloride	0.75	0.68	0.10	$\mu g/m^3$
Methylmethacrylate	ND	ND	0.50	$\mu g/m^3$
Naphthalene	ND	ND	0.50	$\mu g/m^3$
n-Pentane	1.78	1.22	1.00	$\mu g/m^3$
n-Propylbenzene	ND	ND	0.10	$\mu g/m^3$
Propylene	1.85	1.45	0.20	$\mu g/m^3$
Styrene	0.13	ND	0.10	$\mu g/m^3$
1,1,1,2-Tetrachloroethane	ND	ND	0.10	$\mu g/m^3$
1,1,2,2-Tetrachloroethane	ND	ND	0.10	$\mu g/m^3$
Tetrachloroethene	ND	ND	0.10	$\mu g/m^3$
Toluene	1.39	1.11	0.10	$\mu g/m^3$
Tetrahydrofuran	ND	ND	0.10	$\mu g/m^3$
1,1,1-Trichloroethane	ND	ND	0.10	$\mu g/m^3$
1,1,2-Trichloroethane	ND	ND	0.10	$\mu g/m^3$
Trichloroethene	ND	ND	0.10	$\mu g/m^3$
1,2,4-Trimethylbenzene	0.63	0.61	0.10	$\mu g/m^3$
1,3,5-Trimethylbenzene	ND	ND	0.10	$\mu g/m^3$
Vinyl Chloride	ND	ND	0.10	$\mu g/m^3$
Vinyl Acetate	ND	ND	0.20	$\mu g/m^3$
m+p-Xylene	0.62	0.50	0.10	$\mu g/m^3$
o-Xylene	0.25	0.20	0.10	$\mu g/m^3$
MTBE	ND	ND	0.10	$\mu g/m^3$
Ethyl-tert-butylether	ND	ND	0.10	$\mu g/m^3$
Di-isopropylether	ND	ND	0.10	$\mu g/m^3$
tert-amylmethylether	ND	ND	0.10	$\mu g/m^3$
Dilution Factor	1/40*	1/40*		10
Surrogate Recoveries:		÷	QC Limits	۲.
4-Bromofluorobenzene	97%	99%	<u>60 - 140</u>	
			00 110	
<u>Batch ID:</u>		TO1-100621-		
<u>Satur ID</u>	01	01		

* = Dilutions for these compound(s); first number for all others

ND = Value below reporting limit

11007 FOREST PLACE Santa Fe Springs, ca 90670 WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:	Alta Environmental/ NV5	Report date:	10/6/2021
Client Address:	3777 Long Beach Blvd	Jones Ref. No.:	ST-18338
	Long Beach, CA	Client Ref. No.:	444721-0010226.00
Attn:	David Schack	Date Sampled:	10/1/2021
		Date Received:	10/4/2021
Project:	Smash/Muir	Date Analyzed:	10/6/2021
Project Address:	2526 6th St	Physical State:	Air
0	Santa Monica, CA 90405	·	
	EPA TO-15 – Volatile Organics by GC/MS		
	метнор		
<u>Sample ID:</u>	BLANK		
<u>Jones ID:</u>	100621-	ъ	TT
	TO1MB1	<u>Reporting Limit</u>	<u>Units</u>
Analytes:		0.50	, 3
Acetone	ND	0.50	$\mu g/m^3$
Acrolein Benzene	ND	0.10	$\mu g/m_3^3$
	ND	0.10	$\mu g/m^3$
Bromodichloromethane	ND	0.10 0.10	$\mu g/m^3$
Bromoform	ND ND	0.10	μg/m ³ μg/m ³
1,3-Butadiene 2-Butanone (MEK)	ND ND	0.10	$\mu g/m^3$
n-Butylbenzene	ND	0.10	$\mu g/m^3$
sec-Butylbenzene	ND	0.10	$\mu g/m^3$
tert-Butylbenzene	ND	0.10	$\mu g/m^3$
Carbon tetrachloride	ND	0.10	$\mu g/m^3$
Chlorobenzene	ND	0.10	$\mu g/m^3$
Chloroform	ND	0.10	$\mu g/m^3$
Carbon Disulfide	ND	0.10	$\mu g/m^3$
Cyclohexane	ND	0.10	$\mu g/m^3$
Dibromochloromethane	ND	0.10	$\mu g/m^3$
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/m^3$
1,4-Dioxane	ND	0.10	$\mu g/m^3$
1,2- Dichlorobenzene	ND	0.10	$\mu g/m^3$
1,3-Dichlorobenzene	ND	0.10	$\mu g/m^3$
1,4-Dichlorobenzene	ND	0.10	$\mu g/m^3$
1,1-Dichloroethane	ND	0.10	$\mu g/m^3$
1,2-Dichloroethane	ND	0.10	$\mu g/m^3$
1,1-Dichloroethene	ND	0.10	$\mu g/m^3$
cis-1,2-Dichloroethene	ND	0.10	$\mu g/m^3$
trans-1,2-Dichloroethene	ND	0.10	$\mu g/m^3$

	EPA TO-15 – Volatile Or	ganics by GC/MS
Sample ID:	METHOD BLANK	
Jones ID:	100621- TO1MB1	<u>Reporting Limit</u> <u>Units</u>
Analytes:		
Ethyl Acetate	ND	$0.50 \mu g/m^3$
Ethylbenzene	ND	$0.10 \mu g/m^3$
Freon 11	ND	0.10
Freon 12	ND	$0.10 \mu g/m^3$
Freon 113	ND	$0.10 \qquad \mu g/m^3$
Freon 114	ND	$0.10 \mu g/m^3$
n-Heptane	ND	1.00 $\mu g/m^3$
n-Hexane	ND	1.00 $\mu g/m^3$
2-Hexanone (MBK)	ND	$0.50 \mu g/m^3$
Isopropanol	ND	0.50
Isopropylbenzene	ND	$0.10 \mu g/m^3$
4-Isopropyltoluene	ND	0.10
4-Methyl-2-pentanone (MIBK)	ND	0.50
Methylene chloride	ND	0.10
Methylmethacrylate	ND	$0.50 \mu g/m^3$
Naphthalene	ND	$0.50 \mu g/m^3$
n-Propylbenzene	ND	1.00 µg/m ³
Propylene	ND	$\begin{array}{c} 1000 \qquad \qquad \mu g/m^3 \\ 0.10 \qquad \qquad \mu g/m^3 \end{array}$
Styrene	ND	$\begin{array}{c} 0.10 \\ 0.20 \\ \mu g/m^{3} \end{array}$
1,1,1,2-Tetrachloroethane	ND	0.10 µg/m ³
1,1,2,2-Tetrachloroethane	ND	$\begin{array}{ccc} 0.10 & \mu g/m^{3} \\ 0.10 & \mu g/m^{3} \end{array}$
Tetrachloroethene	ND	$\begin{array}{ccc} 0.10 & \mu g/m^{3} \\ 0.10 & \mu g/m^{3} \end{array}$
Toluene	ND	0.10
Tetrahydrofuran	ND	0.10
1,1,1-Trichloroethane	ND	0.10
1,1,2-Trichloroethane	ND	0.10
Trichloroethene	ND	0.10
1,2,4-Trimethylbenzene	ND	0.10
1,3,5-Trimethylbenzene	ND	0.10
Vinyl Chloride	ND	0.10
Vinyl Acetate	ND	0.10
-	ND	0.20 µg/m ³
m+p-Xylene		0.20 μg/m 0.10 μg/m ³
o-Xylene MTBE	ND	
	ND	0.10 $\mu g/m^3$
Ethyl-tert-butylether	ND	0.10 $\mu g/m^3$
Di-isopropylether	ND	0.10 $\mu g/m^3$
tert-amylmethylether	ND	0.10 $\mu g/m^3$
Dilution Factor	1	
Surrogate Recoveries: 4-Bromofluorobenzene	99%	<u>OC Limits</u> 60 - 140
	TO1-100621-	
Batch ID:	01	

ND = Value below reporting limit

11007 FOREST PLACE Santa Fe Springs, ca 9067(WWW.JONESENV.COM

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Client Address:	Alta Environmental/ NV5 3777 Long Beach Blvd Long Beach, CA	Report date:10/6/2021Jones Ref. No.:ST-18338Client Ref. No.:444721-0010226.0	00
Attn:	David Schack	Date Sampled: 10/1/2021	
		Date Received: 10/4/2021	
Project:	Smash/Muir	Date Analyzed: 10/6/2021	
Project Address:	2526 6th St	Physical State: Air	
	Santa Monica, CA 90405		

EPA TO-15 - Volatile Organics by GC/MS

Batch ID:	TO1-100621-01			
Jones ID:	100621-TO1CCV1	100621-TO1CCVD1		
D	CCV	CCVD	222	Acceptability
Parameter	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)
Vinyl chloride	102%	102%	0.0%	70 - 130
1,1-Dichloroethene	110%	112%	1.8%	70 - 130
Cis-1,2-Dichloroethene	110%	104%	5.6%	70 - 130
1,1,1-Trichloroethane	102%	92%	10.3%	70 - 130
Benzene	104%	98%	5.9%	70 - 130
Trichloroethene	108%	112%	3.6%	70 - 130
Toluene	92%	94%	2.2%	70 - 130
Tetrachloroethene	98%	88%	10.8%	70 - 130
Chlorobenzene	100%	104%	3.9%	70 - 130
Ethylbenzene	94%	94%	0.0%	70 - 130
1,2,4 Trimethylbenzene	84%	90%	6.9%	70 - 130
Surrogate Recovery: 4-Bromofluorobenzene	93%	98%		60 - 140

CCV = Continuing Calibration Verification CCVD = Continuing Calibration Verification Duplicate RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 20\%$

Client Alta Environment Client Address 3777 Long Beach Project Name	al/NV5			www.jone	Date	2021 1-0\$16226.			: : Y	cc/mi	in	Jone	se Only s Proj	ect#	B
Project Name SMASH/MUR Project Address 25266 th St Report To David. Scha Email/Phone	Santa Mo	mica,	CA 904	05	Turn Around Re Immediate At Rush 24 Hou Rush 24 Hou Rush 72 Hou Rush 72 Hou Rush 96 Hou Normal - No Summa Canniste 1L + 61	equested ttention - 200% urs - 100% urs - 50% urs - 25% urs - 10% Surcharge r Size		ane ane 1 -A 	*Global ID Gasoline □ Yes	Range Org	-		1	Magnehelic Reading (in/H ₂ O) b	Number of Containers
Sample ID	Date Collected	Purge Number	Purge Volume	Labor	atory Sample ID	Canister ID	Cannister Start Pressure	Cannister End Pressure	Flow Rate (cc/min)	Sampling Start Time	Samplin End Tim		8260B	Magneh	Number
Ambient - J	10/01/21	4		57-19	8338-01	7435	30.5			1546		X			
555-J	10/01/21			57-10	63398-02	B2663	28.0			1542		X			
										*					
Palinauishad By (Signature):			Date		Decision d. D. (Disco										
Relinquished By (Signature):		~	Date: 10/01/202 Time: 2740 Date: 10/4 Time: 5		Recieved By (Signat HW) Company Recieved By Labéra Company Company	Attim		(Date: 10/4 Time: 10/5 Pate: 14 Time: 105	5	C(The delive gnature on th onstitutes au analyses spe Terms and	is Chain thorization cificied at	of Custo n to perfe	dy form orm the der the

APPENDIX B – DIRECT READ INSTRUMENTATION DATA

Pine Environmental Services LLC

11397 Slater Ave. Fountain Valley, CA 92708 Toll-free: 888-620-7463

Pine Environmental Services, Inc.

Des	ment ID 20089 scription MiniRA librated 9/8/202	LE 3000_FIRMWARE 1 5:20:55PM	2.22A					
	facturer Rae Sys			State Cert				
	Model Number MiniRAE 3000				tatus Pass			
	ber/ Lot 592-908	3078	Temp °C 28.9					
	Number Location California Humidity % 52							
-	artment	lla		Hummur	ty /0 52			
	ai iniçiit							
		Calibra	ation Specification	15				
	Group # 1			Range Acc				
Gi	oup Name VOC]	Reading Acc	% 3.0000			
S	tated Accy Pct of	f Reading		Plus/Min	us 0.0			
Nom In Val / In V	/al In Type	Out Val	Out Type	<u>Fnd As</u>	Lft As	Dev%	Pass/Fail	
100.0 / 100.0	PPM	100.0	PPM	100.0	100.0	0.00%	Pass	
Test Instruments	Used During the	Calibration			(As (Of Cal Entr		
Test Standard ID	Description	<u>Manufacturer</u>	Model Number	<u>Serial Nı</u> Lot Num	ber Last		ext Cal Date / piration Date	
CA ISO 100PPM (LOT# CAP-248-100-	CA ISO 100PPM	I Liquid Technology	GP11015	CAP-248 1			13/2022	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Andrew Bettencourt

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com

Pine Environmental Services LLC

3130 Rogerdale Rd., Suite 120 Houston, TX 77042 US Phone: (713) 331-3924

Pine Environmental Services, Inc.

Calibrated	20357 PPM Technolog 9/7/2021 5:26:5 PPM Technolog	53PM	r htv-M	State Certifie	d s Pass		
Model Number				Temp °			
Serial Number/ Lot Number Location				Humidity %	6 41		
Department							
		Calibrat	ion Specification			_	
Group Na	p# 1 me Formaldehyc ccy Pct of Readin	de Test Standard	F	Range Acc % Reading Acc % Plus/Minus	3,000	0 0	
Stated Ad Nom In Val / In Val 23.50 / 23.50	<u>In Type</u> °C	<u>Out Val</u> 2.59	<u>Out Type</u> PPM	<u>Fnd As</u> 2.60	<u>Lft As</u> 2.59	<u>s Dev%</u> 0.00%	Pass/Fail Pass
Test Instruments Used ITest Standard IDDescri		<u>ration</u> <u>Manufacturer</u>	<u>Model Number</u>	<u>Serial Num</u> Lot Numbe	<u>ber /</u> r	(As Of Cal Entr <u>Ne</u> Last Cal Date/ Ex Opened Date	ext Cal Date /

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Ethan Moeller

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC

11397 Slater Ave. Fountain Valley, CA 92708 Toll-free: 888-620-7463

Pine Environmental Services, Inc.

Instrument ID	47595						
Description	PDR-1000AN						
Calibrated	8/26/2021 11:30:32AM						
Manufacturer			State Certified				
Model Number			Status I	Pass			
Serial Number/ Lot	6793		Temp °C 2	24			
Number Location Department	California		Humidity % 5	5			
Calibration Specifications							
Group							
Group Nam Test Performed: Yes	e Functional Test						
Test Performed: Yes	As Found Result: Pass		As Left Result: Pa	ISS			
<u>Test Instruments Used Du</u> <u>Test Standard ID</u> <u>Descripti</u>		<u>Model Number</u>	<u>Serial Number /</u> Lot Number	(As Of Cal Entry Date) <u>Next Cal Date /</u> Last Cal Date/ Expiration Date Opened Date			
lotes about this calibration							

Calibration Result Calibration Successful Who Calibrated Eduardo Turcios

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services, Inc

Instrument ID	47595 ·						
Description	Thermo PDR-1000A	N					
Calibrated	2/24/2021						
Manufacturer			Classifi	cation			
Model Number			1	Status pass			
Serial Number	0.00		Freq	uency 2 Years			
	New Jersey	bepartment Lab					
Temp	Temp 74 Humidity 20						
Calibration Specifications Group # 1 Group Name Calibration							
Test Performed: Yes	As Found Result:	Fail	As Left Res	ult: Pass			
Test Instruments Used Durin	g the Calibration						
Test Instrument IDDescriptionDR-4 MASTERThermoD780Master	ion DataRAM-4000	<u>Manufacturer</u> Thermo	<u>Serial Number</u> D780	<u>(As Of Cale)</u> Last Cal Date 3/6/2020	<u>al Entry Date)</u> <u>Next Cal Date</u> 3/6/2021		
Notes about this calibration Calibration Ratio = 0.984351							
Average PDR Concentration = 1	1.3943 mg/m3						

Average Master Concentration = 1.1447 mg/m3

PDR Background Concentration = 0.164 mg/m3

Calibration Result Calibration Successful Who Calibrated Kevin Cole

Advanced Labs, Inc. hereby certifies that this instrument is calibrated and functions to meet the manufacture's specifications using NIST traceable standards, or is derived from accepted values of physical constants.

Pine Environmental Services LLC

11397 Slater Ave. Fountain Valley, CA 92708 Toll-free: 888-620-7463

Pine Environmental Services, Inc.

Des	ment ID 20089 scription MiniRA librated 9/8/202	LE 3000_FIRMWARE 1 5:20:55PM	2.22A					
	facturer Rae Sys			State Cert				
	Model Number MiniRAE 3000				tatus Pass			
	ber/ Lot 592-908	3078	Temp °C 28.9					
	Number Location California Humidity % 52							
-	artment	lla		Hummur	ty /0 52			
	ai iniçiit							
		Calibra	ation Specification	15				
	Group # 1			Range Acc				
Gi	oup Name VOC]	Reading Acc	% 3.0000			
S	tated Accy Pct of	f Reading		Plus/Min	us 0.0			
Nom In Val / In V	/al In Type	Out Val	Out Type	<u>Fnd As</u>	Lft As	Dev%	Pass/Fail	
100.0 / 100.0	PPM	100.0	PPM	100.0	100.0	0.00%	Pass	
Test Instruments	Used During the	Calibration			(As (Of Cal Entr		
Test Standard ID	Description	<u>Manufacturer</u>	Model Number	<u>Serial Nı</u> Lot Num	ber Last		ext Cal Date / piration Date	
CA ISO 100PPM (LOT# CAP-248-100-	CA ISO 100PPM	I Liquid Technology	GP11015	CAP-248 1			13/2022	

Notes about this calibration

Calibration Result Calibration Successful Who Calibrated Andrew Bettencourt

All instruments are calibrated by Pine Environmental Services LLC according to the manufacturer's specifications, but it is the customer's responsibility to calibrate and maintain this unit in accordance with the manufacturer's specifications and/or the customer's own specific needs.

Notify Pine Environmental Services LLC of any defect within 24 hours of receipt of equipment Please call 800-301-9663 for Technical Assistance

Pine Environmental Services LLC Windsor Industrial Park, 92 North Main Street, Bldg 20, Windsor, NJ 08561, 800-301-9663 www.pine-environmental.com