

1 .

GROUNDWATER MONITORING REPORT

MALIBU PARK SCHOOL 30215 MORNING VIEW DRIVE MALIBU, CALIFORNIA

JULY, 1996

FOR SUBMITTAL TO:

California Regional Water Quality Control Board Leaking Underground Tank Division 101 Centre Plaza Drive Monterey Park, CA 91754-2156 LOP File No. I-13216

ON BEHALF OF:

Sama Monica-Malibu School District 1651 Sixteenth Street Santa Monica, California 90404

TRG Project Number 4786-SMMS

 250 El Camino Real, Suite 214, Tustin, California 92680

 Phone 714 730 5288
 Fax 714 730 6476

TABLE OF CONTENTS

٩

GROUNDWATER MONITORING REPORT

MALIBU PARK SCHOOL 30215 MORNING VIEW DRIVE MALIBU, CALIFORNIA

1.0 INTRODUCTION AND DESCRIPTION OF WORK PERFORMED____1

2.0	MONITORING/SAMPLING RESULTS	1
	 2.1 Groundwater Gradient 2.2 Sampling Procedures 2.3 Analytical Results 	2
3.0	CONCLUSIONS	4
4.0	LIMITATIONS	5

TABLES

TABLE 1	Summary of Groundwater Elevation Data
TABLE 2	Summary of Laboratory Results from 5/95 through 4/96

FIGURES

FIGURE 1Site Location MapFIGURE 2Plot Plan with Analytical Results

,

FIGURE 3 Plot Plan with Groundwater Contours and Flow Direction

APPENDICES

APPENDIX A Field Notes

APPENDIX B

•

۳

Laboratory Report and Chain of Custody Documentation

GROUNDWATER MONITORING REPORT

MALIBU PARK SCHOOL 30215 MORNING VIEW DRIVE MALIBU, CALIFORNIA

1.0 INTRODUCTION AND DESCRIPTION OF WORK PERFORMED

This report presents the results of the groundwater monitoring conducted at Malibu Park School located at 30215 Morning View Drive in Malibu, California (Figure 1) on July 18, 1996. The Reynolds Group (TRG) was retained by Vector Three Environmental, Inc., to perform the work. Figure 2 shows the location of the wells.

Two PVC bailers were used for well purging and new disposable samplers were used for sample collection. Purged water was stored in one labeled 55-gallon DOT-approved barrel and stored on-site pending laboratory analysis. Field notes are attached in Appendix B.

Concentrations of benzene. toluene, ethylbenzene, and total xylenes were detected in monitoring well MW3. Samples collected from monitoring wells MW1, MW2, and MW4 were "non-detect" for all constituents analyzed.

2.0 MONITORING/SAMPLING RESULTS

2.1 Groundwater Gradient

Prior to purging and sampling, the depth-to-water in each well was measured using an electronic sounder. The groundwater flow direction and slope were then calculated by determining the elevations of groundwater in each well relative to surveyed top-of-casing elevations. These data are summarized in Table 1 below. The depth to groundwater has increased between eight and nine feet in each well since May 1995. The groundwater flow direction and gradient were calculated to be approximately towards the south-southwest at a rate of 0.030 feet per foot. The groundwater flow direction with gradient contours is shown in Figure 3.

	TABLE 1 SUMMARY OF GROUNDWATER ELEVATION DATA									
WELL	DATE	ELEVATION OF TOP OF CASING*	DEPTH TO GROUNDWATER	ELEVATION OF GROUNDWATER SURFACE						
MW1	5/5/95 1/16/96 4/4/96 7/18/96	98.83	27.69 31.85 31.58 36.78	71.14 66.98 67.25 62.05						
MW2	5/5/95 1/16/96 4/4/96 7/18/96	99.72	28.78 32.92 32.66 37.86	70.94 66.80 67.06 61.86						
MW3	5/5/95 1/16/96 4/4/96 7/18/96	98.55	29.22 32.83 32.53 37.65	69.33 65.72 66.02 60.90						
MW4	5/5/95 1/16/96 4/4/96 7/18/96	99.29	30.22 34.23 34.65 38.65	69.07 65.06 64.64 60.64						

T.

 * Elevations are relative to a benchmark of 100.00 feet previously established by Eagle Eye Mapping.

2.2 SAMPLING PROCEDURES

17

Two PVC bailers were used for purging the four wells. Approximately three casing volumes of water were purged from each well. During purging, the electrical conductivity pH, and temperature of the well water was measured with a Hydac Conductivity, pH, and Temperature Meter to determine when equalization (confirmation that pH and conductivity values of purged water are consistent within 5%) was achieved. A Lamot Turbidity Meter was used to measure the turbidity during purging. The field notes are included in Appendix B. Purged water was stored in labeled 55-gallon DOT-approved barrels and stored on-site.

Once equalization was achieved or three casing volumes had been removed, the wells were allowed to recharge. Groundwater samples were then collected from the surface of the aquifer using a new disposable sampler for each well. The sampler was slowly lowered into the monitoring well, to reduce agitation of the groundwater. Upon removal from the well, water from the filled sampler was extracted to containers using a bottom-emptying device.

Each water sample was emptied into two pre-cleaned 40 milliliter (mL) VOA sample vials and a one liter glass amber jar. The sample containers were first rinsed with well water, and then overfilled to avoid headspace. One additional vial was filled for turbidity analysis. The sample turbidity was measured and recorded on the field notes The filled sample containers were labeled, placed in an ice-cooled chest, and transported to Chemical and Environmental Laboratories, a California Department of Health Services certified laboratory #1597, following chain-of-custody procedures.

2.3 Analytical Results

The samples were analyzed for total petroleum hydrocarbons (TPH) according to Method 8015 modified for diesel and for benzene, toluene, ethylbenzene and xylenes (BTEX) according to EPA Method 8020. Samples were analyzed by Chemical and Environmental Laboratories, Inc. of Santa Fe Springs, California, a State-certified hazardous waste laboratory #1597. Results from the current and previous monitoring rounds are summarized in Table 2 below. The laboratory report and chain-of-custody documentation are included in Appendix C.

Detectable concentrations of benzene and ethylbenzene were identified in the sample collected from monitoring well MW3. No TPH as diesel, toluene, or xylene was detected in any monitoring well during this groundwater monitoring round. No free product was observed during the field work.

	TABLE 2 SUMMARY OF LABORATORY ANALYSIS RESULTS (RESULTS IN PPB ¹)										
WELL	SAMPLING DATE	TPH AS DIESEL ²	BENZENE ³	TOLUENE ³	ETHYL BENZENE ³	XYLENE ³					
	5/3/95	ND	ND	ND	ND	ND					
MW1	1/16/96	ND	ND	ND	ND	ND					
	4/4/96	ND	ND	ND	ND	ND					
· · · · · · · · · · · · · · · · · · ·	7/18/96	ND	ND	ND	ND	ND					
	5/3/95	ND	ND	ND	ND	ND					
MW2	1/16/96	ND	ND	ND	ND	ND					
	4/4/96	ŊD	ND	ND	ND	ND					
	7/18/96	ND	ND	ND	ND	ND					
	5/3/95	1,200	42.9	16.3	6.9	41.5					
MW3	1/16/96	ND	57.3	ND	80.1	1.6					
	4/4 /96	ND	21.3	1.3	31.3	2.3					
	7/18/96	ND	33.4	ND	34.7	ND					
	5/3/95	800	3.4	2.5	3.8	16.5					
MW4	1/16/96	ND	128.7	ND	69.5	ND					
	4/4/96	ND	119.7	1.5	9.6	1.9					
	7/18/96	ND	ND	ND	ND	ND					
Detection	on Limit	500	0.3	<u>03</u>	0.3	0.5					

1) PPB = parts per billion or nucrograms per liter.

2) TPH as diesel according to EPA Method 8015 modified for oresel

3) Benzene, toluene, ethylbenzene, and xylenes (BIEX) analyzed according to EPA Method 8020.

4) ND = compound not detected above specified detection unit.

5) Blank sample was "non-detect" for all constituents.

3.0 CONCLUSIONS

,

Based on data gathered, we have drawn the following conclusions:

- The depth to groundwater has increased between eight and nine feet since May, 1995.
- The groundwater flow direction was found to be towards the south-southwest.

• Low concentrations of dissolved benzene, and ethylbenzene were detected in downgradient well MW3.

4.0 LIMITATIONS

This report is based on the information gathered during the course of the work as described in the text. Its validity is based on the available facts, circumstances, and data as of the date of the report and TRG takes no responsibility for any subsequent changes in those facts, circumstances, and data.

If you have any questions regarding the contents of this report, please call Ed Reynolds or Angel Cardoza directly at (714) 730-5397.

Thank you for this opportunity to work for you.

Prepared by: THE REYNOLDS GROUP A California Corporation by:

Revnolds Čalifornia RCĚ #3867?

Angel Cardoza

Environmental Engineer

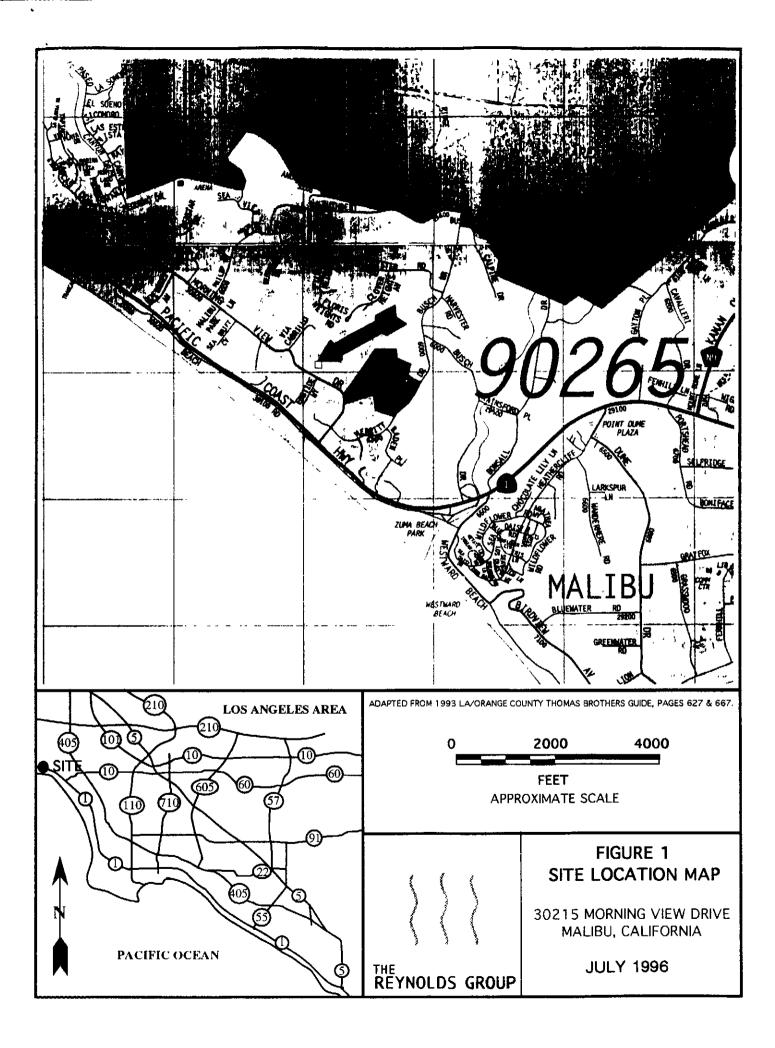

MALIBU SCHOOL DISTRIC F Groundwater Monitoring Report Page 5

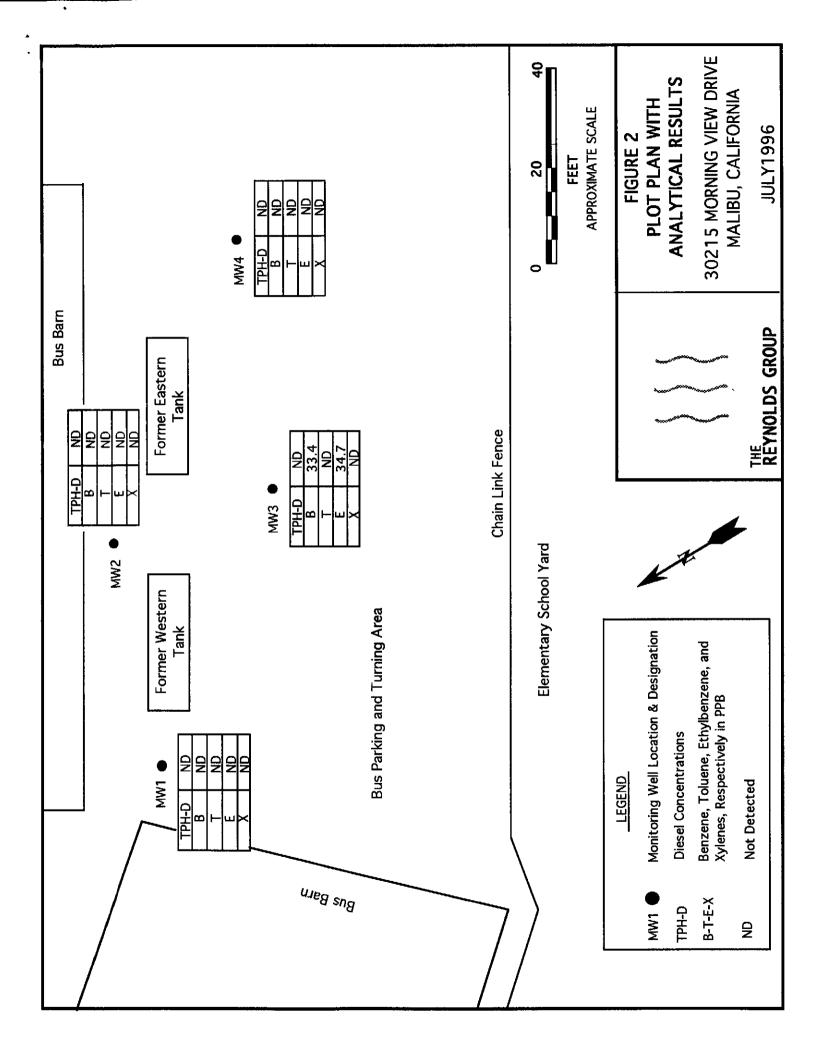
FIGURE 1

.

•

SITE LOCATION MAP

FIGURE 2


٠

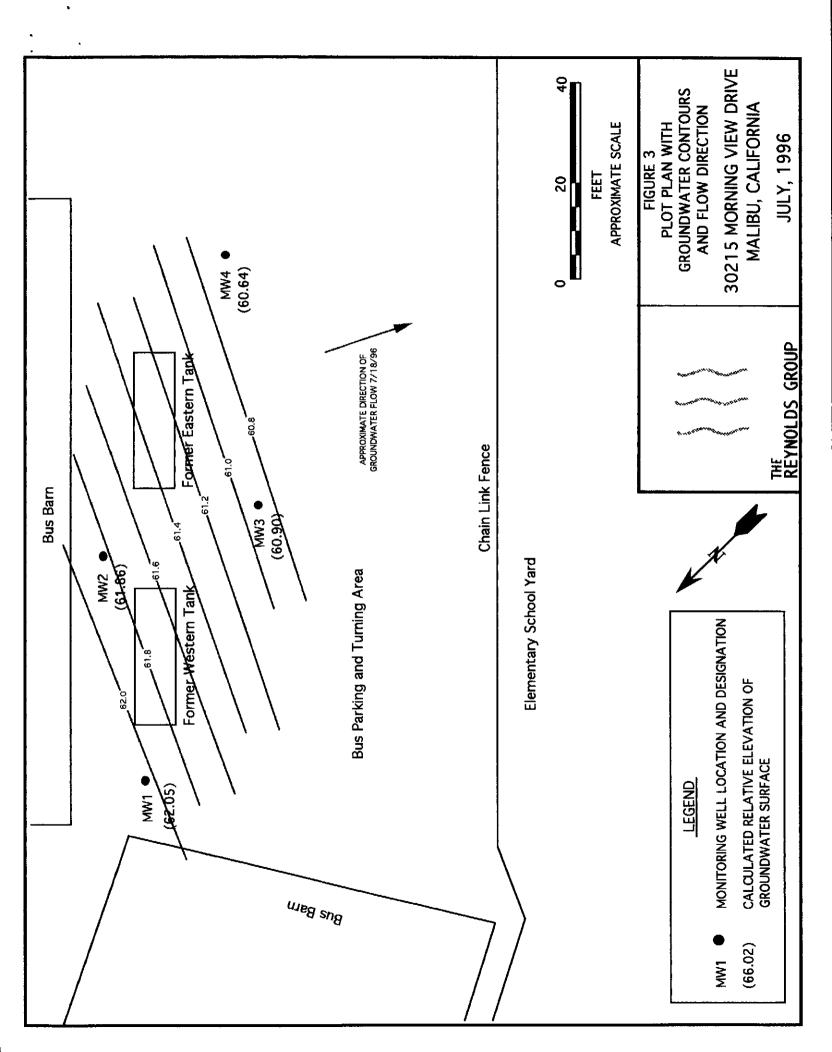
.

.

PLOT PLAN WITH ANALYTICAL RESULTS

.

FIGURE 3


•

•

•

.

PLOT PLAN WITH GROUNDWATER CONTOURS AND FLOW DIRECTION

APPENDIX A

¥

.

FIELD NOTES

					Page d	₽
REYNOLD	S GROUP	<i>a</i>		WA	ATER SAMPLING LOG	
Project I	No		ims		Date 7/18/94	-
Site Loc	ation	Mal)	: Yu	Scho	ol Diet	_
Well No.	Mu	>\	-	<u></u>	Sampling Personnel Avan Cardoza	
Weather	Diev	cast			Time of Sampling	_
					EVACUATION DATA	-
Total Sou	nded Depth		f Relaw	ND 4		
10041304						عنت
					6.78 36.82	
	Wat	er Colur	mn in W	ell <u>(</u>	1,34 Diameter of Casing 4 ¹¹	_
		Gallon	s per Fo	ot	,65	_
		Galic	ons in W	ell <u>'7</u>	Gallons Pumped/Bailed Prior to Sampling <u>UL Gal</u>	_
Evacu	ation Meth	od	ũ	wicki	le Bailer	
	oller Reado				NA	-
_		• •			Disposable Bailer	-
Sauh	ling Method		alcriai		713,090.00	-
60		Comolo:			Container Description	
CO	nstituents (sampied		From	Lab or Preservative	
				400	n Lab or Preservative nl VOA Vilos, 12 Cilass Ambur Blue Ice Tar	_
Time	Cum. Vol. Purged	Ph	Temp.		Comments	٦
	.2	7.82	73	3170		
	10	7.68		2930		
	30	7.64	68.8	2832		┥
			<u> </u>			4
L		L	<u> </u>			
Remark	5			<u> </u>	Turbicling > 200 NTU	_
) WELL CASING VOLUMES	
	GAL/FT		= 0.07 = 0.10		$2^{\circ} = 0.16$ $3^{\circ} = 0.37$ $4^{\circ} = 0.65$ $2\frac{1}{2}^{\circ} = 0.24$ $3\frac{1}{2}^{\circ} = 0.50$ $6^{\circ} = 1.46$	

REYNOLD Project	DS GROUP	54	IME	W /	ATER SA	MPLING		Page 2 of by Date 7/18/92
Site Loc	ation	m.	alin-				•	
						pling Pers	onnel <u>Au</u>	gl Cardsze
Weather	<u>Dier</u>	<u>cas</u>	+		Time	of Sampli	ing	
					EVACL	JATION D	ATA	
Total Sou	nded Dept	h of We	I Below	MP	50-20	Water	-Level Elevation	
	Depth t	o Wate	r Below	MP	57.86			
	Wat	er Colu	mn in W	/ell	2.34	Diama	ter of Casina	4 ''
		Gallon	s per Fo	xot	.65	Diame	ter of Casing	15
					.02		Pumped/Bailed	21 gal
Evacu	uation Meth	xod	(Duic	kie B	are	-	
Contr	oller Reado	ut (Hz)			NA			
Samp	ling Method	d and M	aterial	I	tisposal	le Bei	iler	
					•			
Cor	nstituents :	Sample		Fron	Container De n Lab	or		Preservative
			2	x 40 m	C UDA VI	es, G	ass Aubr	Blue Ice
	Curn. Vol.	T	<u> </u>			· · · · · · · · · · · · · · · · · · ·	JAV	
Time	Purged	1 11	Temp.		Comments			
	5	7.66		3320 3200			·	
	20	7.66	71.3	3140		··· · _·		
			6.2					
				<u>avi</u>				
Remarks	5	T	us be	lity	77	200	NTU	
				J	WELL (CASING V	OLUMES	
	GAL/FT	-	e 0.077 = 0.10	,	2" = 0. 2½" = 0		3" = 0.37 3½" = 0.50	$4^{*} = 0.65$ $6^{*} = 1.46$

•

`.

•							
							Page <u>3</u> of <u>4</u>
				w	ATER SAMPLING	1.06	
	S GROUP No		۸۸ ٦	**/	ATER SAMPLING	200	Date 7/18/96
-		_				•	Date[0[96
Site Loc	ation	Mallb	<u>u</u> .			<u> </u>	
Well No.	MW.	<u>ა</u>			Sampling Persor	nei Anal	Cudoza
Weather	<u>Ova</u>	<u>cas</u>	+		Time of Samplin		
					EVACUATION DA	т а	
Total Cau	- d- d 0			un d	n		
10031200	nded Depti					evel Elevation	
	Depth to	o Water	Below	MP 3	t.65		
	Wat	er Colur	nn in W	ell <u>i</u> (0.95		11 11
		• • •			-65 Diamete	er of Casing	<u> </u>
					Gallons	Pumped/Bailed	21
		Galic	ons in W	'ell <u>7</u>	11	Sampling	21.3
Evacu	uation Meth	lod	Ć	Ruic	cie Beulon		
Contr	oller Reado	ut (Hz)		N	-Ad		
	ling Method		aterial	De	posable Bail	e v	
Service	ing Mealor						
6					Container Description		
Col	nstituents :	sampled	1	Fron	Lab or 16 UDAS, Glass	<u>n</u> .	Preservative
				400	12 UCHS, (7/05)	S Huber.	Blue I ce
Time	Cum. Vol.	Ct	-	Card	-		
	Purged	Ph Ph	Temp.		Comments		
	2 gel 10	8.24 7.86	76	3740			
	15	7.82		3300	· · · · · · · · · · · · · · · · · · ·		
	TT	7.64	_	3240		- 10 <u>,</u> 	
Remarks	5		Tur	well+	yz 30.4	NTU	
					WELL CASING VO	DLUMES	
	GAL/FT		= 0.077 = 0.10		$2^{\circ} = 0.16$ $2\frac{1}{2} = 0.24$	3° = 0.37 3½° = 0.50	
		171	- 0.10		273 = U_24	טבט = ב <i>י</i> נ	0 - 1.40

- •

••

۴

								Page 4 of 4
								rage dr
REYNOLD	S GROUP		r.	WA	TER SAM	IPLING L	OG	Tholor
Project		mu					<u> </u>	Date 7/18/96
Site Loc	ation <u> </u>	Vally	<u>m</u>					
Well No.	MWZ	<u>~ n</u>	104		Sampli	ng Personni	Ahal	Carbora
Weather	Dei	, cac	+			f Sampling	<u></u>	
•					EVACUA			
Total Sa	nded Depti		l Bolow	мр 4				
TOLAI SOL				-		water-Lev	el Elevation	
	Depth to			•	1			
	Wat	er Colur			. 19	Diameter	of Casing	4 ¹¹
		Gallon	s per Fo	ot	.65			
		Galic	ons in W	ell <u>D</u>	.77	Gallons Pu Prior to Sa	mped/Bailed Impling	2.32 gel
Evac	uation Meth	nod .	Qui	ictie	- Bail	e~	•	-
	roller Reado			Ň	<u>}</u>			
		• •			monable	Sauce	laic	
Samt	oling Metho	a ang Mi	atenai		sporasu	<u>c</u> amp		
6-		, Comelos			Container Des	•		0
	onstituents :	Sampled	1		Lab	or		Preservative Blue I Ce
				2144	ul VOA,	1 CAGS	br ·	Olle PCe
Time	Cum. Vol. Purged	Ph	Temp.		Comments			
	Zal	7.15	75.1	4700	Dru	Well		
	Ep)		
ļ							<u> </u>	
L	<u> </u>	I	1		- 165	- N1-	+11	
Remark	s	. <u></u>				<u> </u>	. ~	
					WELL C	ASING VOL	UMES	

APPENDIX B

LABORATORY REPORT AND CHAIN OF CUSTODY DOCUMENTATION

.

July 23, 1996

Mr. Donald Hollenbeck Vector Three Environmental Inc. 11605 So. East End Ave. Chino, CA 91710

Dear Mr. Hollenbeck,

Enclosed please find the analytical report for the samples received on 7/18/96. The samples were received in a chilled state and analyzed as indicated on the chain-of-custody attached. In the report, the analytical results are summarized in total of two pages.

Chemical & Environmental Laboratory is a DHS certified Laboratory (certificate number: 1597). If you have any questions concerning these results and our service, please call me.

Sincerely,

Low

Larry Zhang, Ph.D. Laboratory Director

ANALYTICAL REPORT

---M8015(D)/BTEX---

Client Name: Vector III Project Manager: Don Hollenbeck Project Name: Malibu School District

· •

Date Sampled: 07/18/96 Date Analyzed: 07/18-19/96 Date Reported: 07/22/96

C&E ID Sample ID 60718B-1 MW-1 60718B-2 MW-2 60718B-3 MW-3 60718B-4 MW-4 60718B-4 MW-4	Diesel ND	Benzene	Toluene		
60718B-2 MW-2 60718B-3 MW-3	ND	210	1 0.00110	Ethylbenzene	Xylenes
60718B-3 MW-3		ND	ND	ND	ND
	ND	ND	ND	ND	ND
60718B-4 MW-4	ND	0.0334	ND	0.0347	ND
	ND	ND	ND	ND	ND
	· · · · · · · · · · · · · · · · · · ·				
	<u> </u>		,,,	-	
			-		
Detection Limit:	0.5	0.0003	0.0003	0.0003	0.0005

ND = Not detected at the indicated detection limit.

• • •

6071	8B	CHAI	N OF CL	JSTODY RECO	RD	N⁰	33025
Client: Vecto	y Three			Site Address: 302	15 Mori	ing View	Drive
Project No/Nar	ne: 5	MMS		N/	alibu. (2A	
Project Manage	er: Don t	Tollenbec	k.	Sampled By: Ah	gl Cardi	579, Jr.	
Tel:		Fax:		Date 7/18/96		Page of	<u> </u>
SAMPLE ID	DATE	TIME	TYPE	CONTAINER TYPE	ANALY	SES REQUIRE	D
MWI	7/18/26	1319	Water	2×40m2 VOA, 12	Labors Aunter	BOISdiey 1	<u> 2020 BIE</u> ,
MW2	1	1335					
MW3		134B					
MW4		1351		¥		¥	
- <u></u>							
	_		 				
•							
		1					
<u></u>						· · · · · · · · · · · · · · · · · · ·	
			+		<u> </u>		
·····							1
			+				<u> </u>
····		<u> </u>			 		
Remarks:	<u> </u>	<u> </u>					
Reinquistr K-9		Date 7(18/96	Time 4:18pm	Beceived By:	Date 7/13/96	Time 4 = 18 f	m
Relinquish	ed By:	Date	Time	Received By:	Date	Time	

14148 E. Firestone Blvd., Santa Fe Springs, CA 90670 Tel: 310 921-8123, Fax: 310 921-7974

QA/QC REPORT

--- M8015(D)/M602 --

I. Matrix Spike (MS)/Matrix Spike Duplicate(MSD)

6 . K

Date Performed: Batch #: Lab Sample I.D.:	07/18–19 1542 60718B	/96					Unit: mg/L	
ANALYTE	SPK CONC	MS (mg/L)	MS %	MSD (mg/L)	MSD %	RPD	ACP %MS	ACP RPD
Benzene	0.0200	0.0178	89	0.0168	84	5.8	80-120	20
Toluene	0.0200	0.0173	87	0.0171	86	1.2	80-120	20
Ethylbenzene	0.0200	0.0173	87	0.0183	92	5.6	80-120	20
Xylenes	0.0200	0.0171	86	0.0182	91	6.2	80-120	20
Diesel	500	462	92	455	91	1.5	70-120	20

II. Laboratory Quality Control Check Sample

ANALYTE	SPK CONC	RESULT	%RECOVERY	ACP %
Benzene	0.0200	0.0167	84	80-120
Toluene	0.0200	0.0165	83	80-120
Ethylbenzene	0.0200	0.0164	82	80-120
Xylenes	0.0200	0.0165	83	80-120
Diesel	500	471	94	80-120

14148 E. Firestone Blvd., Santa Fe Springs, CA 90670 Tel: 310 921-8123, Fax: 310 921-7974