

PCB DELINEATION AND SOURCE BULK SAMPLING REPORT

Gymnasium Building John Adams Middle School 2425 16th Street Santa Monica, CA 90405

Prepared for:

Santa Monica-Malibu Unified School District 1651 Sixteenth Street Santa Monica, California 90404

Project No.: SMSD-18-7431 Date: January 30, 2018

Alta Environmental 3777 Long Beach Boulevard Annex Building Long Beach CA 90807 United States of America T (562) 495 5777 F (562) 495 5877 Toll-free (US only) 800 777-0605 altaenviron.com

EXECUTIVE SUMMARY

On behalf of the Santa Monica-Malibu Unified School District (District), Alta Environmental (Alta) has prepared this report summarizing the delineation and bulk sampling activities completed in preparation for the removal and replacement of four door frames located in the Gymnasium Building at John Adams Middle School located at 2425 16th Street, Santa Monica, California 90405. The delineation and bulk sampling activities were conducted to determine the potential presence of polychlorinated biphenyl compounds (PCBs) in order to characterize materials for off-site waste disposal. It is understood that the door frames are scheduled to be removed during Summer 2018.

The doorframes that are scheduled to be removed are located in rooms 102A (116), 104 (114), 108 (101), and boy's restrooms (129). These doors are identified in the DSA approved project drawings, Sheet A5.1, prepared by Jubany NAC Architecture, #161-17019, dated November 1, 2017.

Initially, Alta conducted delineation sampling of representative porous materials adjacent to the doorframes on January 15, 2018. The objective of this sampling was to determine if suspected polychlorinated biphenyls (PCBs) containing door caulking may have migrated to adjacent porous materials. All delineation samples collected at 1" interval away from the doorframes were reported as non-detected, at the laboratory Detection Limit (DL) of 1ppm.

Also, on January 15, 2018, Alta collected bulk samples of door caulking from various locations of the Site. One sample was obtained from each door frame (totaling four samples). Analysis of the door caulking samples was placed on hold pending results of the delineation samples. Based on the delineation sampling results, Alta, at the direction of the District, directed the laboratory to proceed with the door caulking analysis. . All source samples were reported as non-detected, at the laboratory Detection Limit of 1ppm

Based on the delineation and source sampling results and in consultation with the SMMUSD, the sampled building materials are categorized as Excluded PCB Product, which is not regulated by the US Environmental Protection Agency (US EPA) under the Toxic Substances Control Act (TSCA).

Other regulated building related hazardous materials (lead and asbestos) were determined to be present at the Site and it is Alta's understanding that the demolition contractor will adhere to other regulatory requirements for handling and disposal of identified asbestos-containing materials and lead-based paints.

CONTENTS

1	INTRODUCTION/BACKGROUND	1
2	PURPOSE OF INSPECTION AND SAMPLING	1
3	SCOPE OF SERVICES	2
4	METHODOLOGY	2
5	RESULTS	2
6	QUALITY CONTROL	3
7	CONCLUSIONS	3
8	RECOMMENDATIONS	3
9	ASSUMPTIONS AND LIMITATIONS	3
10 Appendi	SIGNATORY	4
Appendix	A: Sample Inventories	
Appendix	B: Laboratory Reports	
Appendix	C: Sample Location Maps	
Appendix	D: Photographs	

REPORTED: January 19, 2018

PROJECT NO.:

CLIENT: Santa Monica-Malibu Unified School District 2828 West 4th Street Santa Monica, California 90405

ATTENTION: Mr. Chris Emmett

REF: PCB Delineation and Source Bulk Sampling Report Gymnasium Building John Adams Middle School 2425 16th Street Santa Monica, California 90405

1 INTRODUCTION/BACKGROUND

The United States Environmental Protection Agency (USEPA) believes that there was potentially widespread use of polychlorinated biphenyl compounds (PCBs)-in building materials in schools and other buildings built or renovated between 1950 and 1979. Historically, PCBs were used as a primary source of plasticizing agents in caulking and glazing materials, as additives to paints and floor finishes, as a sealant for heating systems and plumbing, and as insulators in ballast and other electrical equipment. The manufacture and use of PCBs were banned in the United States in 1976, and PCB compounds were phased out between 1978 and 1979. According to District records, the Gymnasium building was constructed in 1948, and may have been subjected to renovation, indicating the potential for the door caulking to contain PCBs. Therefore, the door caulking was sampled prior to the planned building renovation activities.

Additionally, PCBs in manufactured materials such as door caulking may move directly into adjoining materials, particularly porous materials such as wood, concrete, and other types of masonry. In schools with manufactured PCB sources, many kinds of building material have been found to have measurable levels of PCBs and are potential secondary PCB sources. Delineation sampling was completed around the four doorframes to determine if PCBs may have migrated to adjacent porous surfaces.

2 PURPOSE OF INSPECTION AND SAMPLING

Building materials included in this report were evaluated for PCBs only. A survey for asbestos-containing materials (ACM) and lead-based paint (LBP) has been completed for this building, and the results and findings are included in a separate document.

The objective of this sampling was to obtain samples from a sufficient number of locations to:

- Serve as a representative indication of the variety of potentially PCB-impacted materials
- Draw conclusions of the potential presence of PCB-impacted materials
- Determine if a site-specific remediation work plan is required to address materials with ≥50 parts per million (ppm) PCBs prior to undertaking the demolition and disposal of building materials
- Categorize each type of building material for off-site disposal related solely to its PCB content. In general, PCB-impacted materials can be sorted and classified into the following categories
 - PCB Bulk Product Waste (≥ 50 ppm). According to Environmental Protection Agency (EPA) Memorandum, "PCB Bulk Product Waste Reinterpretation," dated October 24, 2012, building materials "coated or serviced" with PCB bulk product waste (e.g., caulk, paint, mastic, sealants) at the time of designation for disposal are to be managed as a PCB bulk product waste. The reinterpretation document allows for disposal of both PCB Bulk Product

Waste and PCB Remediation Waste together as a single waste stream (PCB Bulk Product Waste)

• Excluded PCB Product-all materials containing <50 ppm.

3 SCOPE OF SERVICES

The Santa Monica-Malibu Unified School District (District), retained Alta Environmental (Alta) for the delineation and subsequent source bulk sampling (Alta proposal dated, January 10, 2018).

The sampling was completed in accordance with the USEPA Region I Standard Operation Procedures for Sampling Porous Surfaces for Polychlorinated Biphenyl (USEPA 2011).

Initially, Alta completed delineation sampling representative of porous materials installed around the four doorframes. The sampling was completed starting at one-inch (1"), three-inch (3") and six-inch (6") intervals away from the impacted door frames representative of a surface depth of 0-.5" of substrate material. Only the 1" sample was initially analyzed, with the intent of analyzing the 3", and 6" samples only if PCBs were detected.

Following the delineation sampling, Alta collected source bulk samples, one from each doorframe (total of four samples).

Alta's delineation and source bulk sampling was completed as follows:

- 1. A one-inch drill, screwdriver, razor blade, chisel, or similar tool was used to collect the samples.
- 2. A polyethylene drop-sheet was placed below the impacted area to capture any dust and debris which may have dislodged during the sample collection.
- 3. Samples were labeled, packaged, and documented on a chain of custody for shipping to the laboratory.
- 4. Samples were shipped to the laboratory in a chilled ice chest.
- 5. Sampled areas were patched using a non-PCBs sealant. The patch area is temporary, intended only to provide a barrier to the exposed sampled substrates.
- 6. Each sample location was documented using digital photographs.
- 7. Equipment and tools were decontaminated using a two-step decontamination process. First, all used tools were cleaned using scrub brushes and detergent with de-ionized water base solution. Second, each piece was rinsed using de-ionized water. After the two-step decontamination procedures, the equipment was placed on top of clean paper towels (or equivalent material) and set to dry individually. Each piece of equipment was inspected by Alta for evidence of residual dust and debris.
- 8. Waste was packaged on site inside one one-gallon bucket and labeled. After review of the sample results, it was determined that the waste was an Excluded PCB Product.

4 METHODOLOGY

The Actual Detection Limit (DL) used by the laboratory for this project was 1 ppm, which is currently being used as approved by the USEPA to defined PCB Bulk Product Waste.

All samples were analyzed in accordance with EPA Method 8082A with Soxhlet Extraction US EPA Method 3540C for Aroclors.

5 RESULTS

Based on a review of the analytical data, PCBs were non-detected at concentrations greater than 1ppm in any of the samples collected from the Site.

These materials are further defined in Appendix A of this report.

Refer to Appendix B for laboratory analysis reports and relevant sample analysis information.

6 QUALITY CONTROL

In addition to the primary samples, Alta collected one duplicate sample. The duplicate sample was collected side by side next to the primary sample.

A total of 1 split-duplicate sample was collected and analyzed by Environ-Chem. A sample location was selected next to a primary sample; the sample was collected, homogenized and split into two identical samples. The split samples were assigned a unique blind selected sample number.

All samples including duplicate and split duplicates were placed in an appropriate glass jar with a Teflon cap provided by the laboratory. Samples were labeled and packaged in a cooler and kept cool with ice during shipment.

Results of duplicate samples and split duplicate samples were reported as consistently within acceptable analytical limits.

Based on a review of the laboratory QC data associated with the sample analysis, the recovery and precision are within the acceptable limits of the laboratory. Enviro-Chem reported, "all samples were received intact, and accompanying chain of custody."

7 CONCLUSIONS

Based on the sampling results, PCB concentrations in all door caulking samples collected were reported as less than 50 parts per million (ppm). Therefore, based on the results of the sampling, and in consultation with the SMMUSD, the door caulking is categorized as Excluded PCB Product, which is not regulated by US Environmental Protection Agency (US EPA) under the Toxic Substances Control Act (TSCA). Please note that although PCBs in building material at the Building are not regulated by US EPA, it is Alta's understanding that the demolition contractor will adhere to other regulatory requirements for handling, and disposal of identified asbestos-containing materials and lead-based paints.

8 **RECOMMENDATIONS**

Asbestos-containing materials and lead-based paints have previously been identified at the site and are described in a separate report. Removal of ACMs and LBP is subject to local, state and federal requirements. A survey record and abatement plan have been prepared for this site which is to be used for the removal and waste disposal of ACM and LBP.

9 ASSUMPTIONS AND LIMITATIONS

Alta's sampling was limited to door caulking installed on four door frames (102A [116], 104 [114], 108 [101], and boy's restrooms [129]) which are scheduled to be removed and replaced. The results are intended for use by the District and its contractors to characterize generated waste building materials for disposal, based in part on the reported PCB content during the demolition of the building.

This report was prepared exclusively for use by Santa Monica-Malibu Unified School District, and may not be relied upon by any other person or entity without Alta Environmental's express written permission. The information, conclusions and recommendations described in this report apply to conditions existing at certain locations when services were performed and are intended only for the specific purposes, locations, time frames and project parameters indicated. Alta Environmental cannot be responsible for the impact of any changes in environmental standards, practices or regulations after the performance of services.

In performing our professional services, we have applied engineering and scientific judgment and used a level of effort consistent with the current standard of practice for similar types of studies.

As applicable, Alta Environmental has relied in good faith upon representations and information furnished by individuals with respect to operations and existing property conditions, to the extent that they have not been contradicted by data obtained from other sources. Accordingly, Alta Environmental accepts no responsibility for any deficiencies, omissions, misrepresentations, or fraudulent acts of persons interviewed.

Alta Environmental will not accept any liability for loss, injury claim, or damage arising directly or indirectly from any use or reliance on this report. Alta Environmental makes no warranty, expressed or implied.

This report is issued with the understanding that the client, the property owner, or its representative is responsible for ensuring that the information, conclusions, and recommendations contained herein are brought to the attention of the appropriate regulatory agencies, as required.

Material quantities are in some cases listed within this document. These quantities are not intended to be used for removal bidding purposes. Nor is this document intended as a contract manual. Work methods and sequence, coordination of participants, applicable codes, engineering controls, required submittals, and notifications should in all cases be addressed in a separate and independent bidding and contract document. If you have any questions, please do not hesitate to contact the undersigned at (562) 495-5777. We appreciate the opportunity to be of service to Santa Monica-Malibu Unified School District.

10 SIGNATORY

Respectfully submitted by:

Alta Environmental

Cesar Ruvalcaba, CAC, CDPH Sr. Project Manager

Respectfully submitted by:

Alta Environmental

RSOD

David Schack, CAC, CDPH Vice President, Building Sciences

Sample Inventory

CLIENT: Santa Monica-Malibu Unified School District

PROJECT NO:SMSD-17-7431PROJECT:Jams GymDate:1/15/18

Building Name	Sample Number	Component ID	Sample Description	Sample Location	Photograph Number	Total PCBs (mg/kg)	Time
Gymnasium	115-01	Interior door casing (116)	Smooth wall plater	Girls wing outside of restroom 102A (116), 4ft up (1")	115-01	Non-detected	815
Gymnasium	115-04	Interior door casing (114)	Smooth wall plater	girls wing outside of 104 (114), 5ft up (1")	115-04	Non-detected	845
Gymnasium	115-04A	Interior door casing (114)	Smooth wall plater	Side by side duplicate sample of 115-04	115-04	Non-detected	845
Gymnasium	115-07	Interior door casing (101)	Smooth wall plater	Girls wing, outside of 108 (101), 5 ft up (1")	115-07	Non-detected	915
Gymnasium	115-10	Interior door casing (128)	Smooth wall plater	Boys wing, interior restroom (128), 5 ft. up (1")	115-10	Non-detected	1000
Gymnasium	115-13	Interior door casing (116)	Drywall	Boys restroom wing, exterior of restroom (129), 2 ft. up (1")	115-13	Non-detected	1115
Gymnasium	115-13A	Interior door casing (116)	Drywall	Split duplicate sample of 115-13	115-13A	Non-detected	1130

CLIENT: Santa Monica-Malibu Unified School District

PROJECT NO:SMSD-17-7431PROJECT:Jams GymDate:1/15/18

Building Name	Sample Number	Component ID	Sample Description	Sample Location	Photograph Number	Total PCBs (mg/kg)	Time
Gymnasium	115-S01	Interior door (116)	Door caulking	Girls wing outside of restroom 102A (116), 4ft up (1")	115-S01	Non Detected	1300
Gymnasium	115-S02	Interior door (114)	Door caulking	girls wing outside of 104 (114), 5ft up (1")	115-S02	Non Detected	1315
Gymnasium	115-S03	Interior door (108)	Door caulking	Girls wing, outside of 108 (101), 5 ft up (1")	115-S03	Non Detected	1350
Gymnasium	115-S04	Interior door (128)	Door caulking	Boys wing, interior restroom (129), 5 ft. up (1")	115-S04	Non Detected	1355

Appendix B

Laboratory Reports

Enviro – Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: January 18, 2018

Mr. Cesar Ruvalcaba Alta Environmental 3777 Long Beach Blvd, Annex Building Long Beach, CA 90807 Tel: (562)495-5777 Email:Cesar.Ruvalcaba@altaenviron.com

Project: JAMS Lab I.D.: 180115-42 through -62

Dear Mr. Ruvalcaba:

The **analytical results** for the solid samples, received by our laboratory on January 15, 2018, are attached. The samples were received intact, and accompanying chain of custody.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wand

Laboratory Manager

Enviro – Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Alta Environmental 3777 Long Beach Blvd, Annex Building, Long Beach, CA 90807 Tel: (562)495-5777 Email:Cesar.Ruvalcaba@altaenviron.com PROJECT: JAMS DATE RECEIVED:01/15/18

	DATE RECEIVED: UI/IS/18
DATE SAMPLED: <u>01/15/18</u>	DATE EXTRACTED: 01/15-16/18
MATRIX: <u>SOLID</u>	DATE ANALYZED: 01/16/18
REPORT TO: MR. CESAR RUVALCABA	DATE REPORTED: 01/18/18

PCBs ANALYSIS METHOD: EPA 3540C/8082 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE	LAB	PCB-	TOTAL							
I.D.	I.D.	1016	1221	1232	1242	1248	1254	1260	PCBs*	DF
115-01	180115-42	ND	1							
115-04	180115-45	ND	1							
115-07	180115-48	ND	1							
115-10	180115-51	ND	1							
115-13	180115-54	ND	1							
115-13A	180115-57	ND	1							
<u>115-4A</u>	180115-58	ND	1							
Method 1	Blank	ND	1							
	PQL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	

COMMENTS

DF = Dilution Factor

PQL = Practical Quantitation Limit

Actual Detection Limit = DF X PQL

ND = Non-Detected Or Below the Actual Detection Limit

* = Sum of the PCB 1016, 1221, 1232, 1242, 1248, 1254 and 1260

*** = The concentration exceeds the TTLC Limit of 50, and the sample is defined as hazardous waste as per CCR-TITLE 22 (if marked)

Data Reviewed and Approved by: CAL-DHS ELAP CERTIFICATE No.: 1555

	1214 E.	. Lexington Av		viro-Ch ona, CA 91766	· · · · · · · · · · · · · · · · · · ·	- 9)590-5905 F	ax (909)590-5	907	
		<u>EP</u>	A 80	82 QA	/QC F	Repor	t		
Matrix:	Soil/So	lid/Sludg	qe		Date Analy	zed:	1/16-17/20	<u>18</u>	
Unit	mg/Kg(PPI								
Matrix Spike (MS) Spiked Sample La				-LCS1/2					
Analyte	S.R.	spk conc	MS	%REC	MSD	%REC	%RPD	ACP %RPD	ACP %RE
PCB (1016+1260)	0.000	0.100	0.094	94%	0.097	97%	3%	0-20%	70-130
Analyte PCB (1016+1260)	spk conc 0.100	LCS 0.103	% REC		%REC				
Surrogate Recover	v	ACP%	ACP%	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.			MB	180115-42	180115-45	180115-48	180115-51	180115-54	180115-57
Tetra-chloro-meta->	kylene	50-150	128%	127%	126%	131%	115%	126%	127%
Decachlorobipneyl		50-150	137%	141%	133%	136%	102%	106%	121%
Surrogate Recover	y	%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Sample I.D.		180115-58							
Sample i.D.	kylene	133%							
						· · · · · · · · ·	1		
Tetra-chloro-meta->		103%							
Tetra-chloro-meta-> Decachlorobipneyl		103%	%REC	%REC	%REC	%REC	%REC		
Tetra-chloro-meta- Decachlorobipneyl Surrogate Recover			%REC	%REC	%REC	%REC	%REC		
Tetra-chloro-meta- Decachlorobipneyl Surrogate Recover Sample I.D.	ý		%REC	%REC	%REC	%REC	%REC		
Tetra-chloro-meta-> Decachlorobipneyl Surrogate Recovery Sample I.D. Tetra-chloro-meta-> Decachlorobipneyl	ý		%REC	%REC	%REC	%REC	%REC		
Tetra-chloro-meta-> Decachlorobipneyl Surrogate Recovery Sample I.D. Tetra-chloro-meta-> Decachlorobipneyl	ý	%REC		%REC			%REC		
Tetra-chloro-meta- Decachlorobipneyl Surrogate Recoven Sample I.D. Tetra-chloro-meta- Decachlorobipneyl S.R. = Sample Result	y xylene	%REC	* = Surrogate		rix interference	(If Marked)			
Tetra-chloro-meta-> Decachlorobipneyl Surrogate Recovery Sample I.D. Tetra-chloro-meta->	y xylene	%REC	* = Surrogate	fail due to mat	rix interference	(If Marked)			

Analyzed and Reviewed By:

Final Reviewer:

Enviro-Chem, Inc. L 1214 E. Lexington Ave Pomona, CA 91766 Tel: (909) 590-5905 Fax: (CA-DHS ELAP CERTIFICA	nue, 909) 590-5907	Turnarour 0 Same Day 0 24 Hours 0 48 Hours 72 Hours 0 1 Week (S Other:	/	S.	OF CONTAINERS	TEMPERATURE	Star Bres				Misc./PO#
SAMPLE ID	LAB ID	SAM DATE	PLING TIME	MATRIX	No. O	PRES		Analysis	Require	d	COMMENTS
15-01	180115-42			8.152		110					123
1 -02	1 -43	1	0620	1	1×4	ajirj	x				Archive 34
-03	-44		0055				x				1 6"
~04	-45		otts				X				1356
-05-	-46		0655				X				Archive 3"
-06	-47		Crips				X				L 6"
-07	-48		0915				X				1.11
-06	-49		0430				X				Archive se
-09	-50		0990				X				1 6"
-10	- + 1		1000				X				ι"
~1)	-52		1015				X				Aroba 3"
-12	-53		1030				X				
-13	-54		1115				x				رنع
-14	-57		1145				X				Archin 311
15	1 - 20	7	1200	سلمہ		1	- X				L 61
Company Name: Alta EN	vironmenter				Project	Contact: Sar fuil	alcaber		Sampler's	ignature:	T
Address: 3777 600	- Beerer Bive	1			Tel: S	562-4	95-5	777	Project Nan	ne/ID:	
City/State/Zip: Corof Be	rellin CA	900	07		Fax:	-				AMS	
Relinquished by:	1-1.	IR	Received	by:	0	-		Date & Time: 15	30 Instr	uctions for Sa	mple Storage After Analysis:
Relinquished by:	, , , ,		Received	by:	0			Date & Time:			eturn to Client O Store (30 Days)
Relinquished by:			Received	by:	V			Date & Time:	O Ot	her:	
Date: 1/15/18			CHAI			YELLOW TO CLIE		RD		Pag	e_13

<i>Enviro-Chem, Inc. L</i> 1214 E. Lexington Ave Pomona, CA 91766 Tel: (909) 590-5905 Fax: CA-DHS ELAP CERTIFIC	enue, (909) 590-5907	Turnarour 0 Same Day 0 24 Hours 0 48 Hours 2 Hours Week (S Other:	/	MATRIX	F. CONTAINERS	EMPERATURE	PRESERVATION	CAR	~	//			/	//	Mi	sc./PO#
SAMPLE ID	LAB ID	SAM DATE	PLING TIME	MATR	No. OF.	TEMP	PRES		A	nalys	sis R	equ	ire	d	co	MMENTS
115-13A	180115-47	1/15/18	1BO	BUK			ice	×								111
115-4A	1-78	1115/18	6650	T			T	×								11.
	•								-		_			_	_	
		-		-					-				_		-	
										-	-					
											1					
												_				
											_					
											_				_	
									-		-	_			_	
										-	_					
Company Name: AHA EI	NUNamenten 1				Proje	ct Con	tact: 名CV	Rive	141	her		Samp	ler's S	gnature:	Sta I	
Address: 3777 La	IN BELL B	SUE			Tel:		52-4					Proje	ct Nam	e/ID:		
City/State/Zip: Uno Ba		0607			Fax:			_					,	AM	5	
Relinquished by: Aurh	Received	by:	\cap		/			Date & Time		10	Instru	ctions for	Sample Storag	e After Analysis:		
Relinquished by:									Date & Time							
Relinquished by:						pived by: Date & Time:					O Other:					
			CHAI	N OF	CUS	STO	DYR	RECO	RD			-				-

WHITE WITH SAMPLE . YELLOW TO CLIENT

Page _____ of _____

<i>Enviro-Chem, Inc. L.</i> 1214 E. Lexington Ave Pomona, CA 91766 Tel: (909) 590-5905 Fax: (CA-DHS ELAP CERTIFICA	nue, (909) 590-5907	Turnaroun 0 Same Day 0 24 Hours 0 48 Hours 12 Hours 0 1 Week (St Other:		×	OF CONTRINERS	TEMPERATURE	PRESERVATION	CPA BOBZ	//	[]		//		/	Misc./PO#	ŧ
SAMPLE ID	LAB ID	SAMF DATE	PLING TIME	MATRIX	No. O	TEMP	PRESI		Ana	alysi	is Red	quir	ed		COMMENTS	
115-501	180115-19		0840	Brack	-	-	lee	K		T		-			Archive	-
115-502	1-60	1	00100	1			1	x							1	
115-503	-61		0955					X								
115-504	1-62	-1-	100	+			1	<								
	"															
					_											
												_				
					-				_			_				
							-			_						
									-	-		_	_			
Company Name:	D a t				Droio	ct Con	taati									
Company Name: AHA EV		rioje	Ce	sev	Ren	10/0	nhor	Sa	R	Signatu	Us-	The	_			
Address: 3777 Low			Tel:	SG	2-4	95-	57	77	Pr		ame/ID:		<i></i>			
City/State/Zip: Corry Bco	>7		Fax:							2	MAL	5				
Relinquished by:	Received	bv:	0		~		Dat	te & Time:	115110	In	structions	for Sa	mple Storage After Ana	alveie:		
Relinquished by:	Received			ð				e & Time:	1, 300				turn to Client O Store (30			
Relinquished by: Received										O Other:						
Date:				N OF			DY R		_					Pag	<u>3</u>	

Enviro – Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

Date: January 19, 2018

Mr. Cesar Ruvalcaba
Alta Environmental
3777 Long Beach Blvd, Annex Building
Long Beach, CA 90807
Tel: (562)495-5777 Email:Cesar.Ruvalcaba@altaenviron.com

Project: JAMS Lab I.D.: 180115-42 through -62

Dear Mr. Ruvalcaba:

The **additional PCB's results** for the solid samples, received by our laboratory on January 15, 2018, are attached. The samples were received chilled, intact, accompanying chain of custody and also stored per the EPA protocols.

Enviro-Chem appreciates the opportunity to provide you and your company this and other services. Please do not hesitate to call us if you have any questions.

Sincerely,

Curtis Desilets Vice President/Program Manager

Andy Wang Laboratory Manager Enviro – Chem, Inc.

1214 E. Lexington Avenue, Pomona, CA 91766 Tel (909) 590-5905 Fax (909) 590-5907

LABORATORY REPORT

CUSTOMER: Alta Environmental

3777 Long Beach Blvd, Annex Building, Long Beach, CA 90807 Tel:(562)495-5777 Email:Cesar.Ruvalcaba@altaenviron.com PROJECT: JAMS

DAME DECETUED. 01 /1E /10

DATE RI	ECEIVED:01/15/18
DATE SAMPLED: 01/15/18 DATE EX	XTRACTED: 01/18-19/18
MATRIX: SOLID DATE AN	NALYZED: <u>01/19/18</u>
REPORT TO: <u>MR. CESAR RUVALCABA</u> DATE RI	EPORTED: <u>01/19/18</u>

PCBs ANALYSIS METHOD: EPA 3540C/8082 UNIT: mg/Kg = MILLIGRAM PER KILOGRAM = PPM

SAMPLE	LAB	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-	PCB-	TOTAL	
I.D.	I.D.	1016	1221	1232	1242	1248	1254	1260	PCBs*	DF
115-so1	180115-5	9 <u>ND</u>	ND	1						
115-S02	180115-6	0 ND	ND	ND	ND	ND	ND	ND	ND	1
115-S03	180115-6	<u>1 ND</u>	ND	1						
<u>115-S04</u>	180115-6	2 ND	ND	ND	ND	ND	ND	ND	ND	1
<u>Method E</u>	lank	ND	ND	ND	ND	ND	ND	ND	ND	1
	POL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	

COMMENTS

DF = Dilution Factor

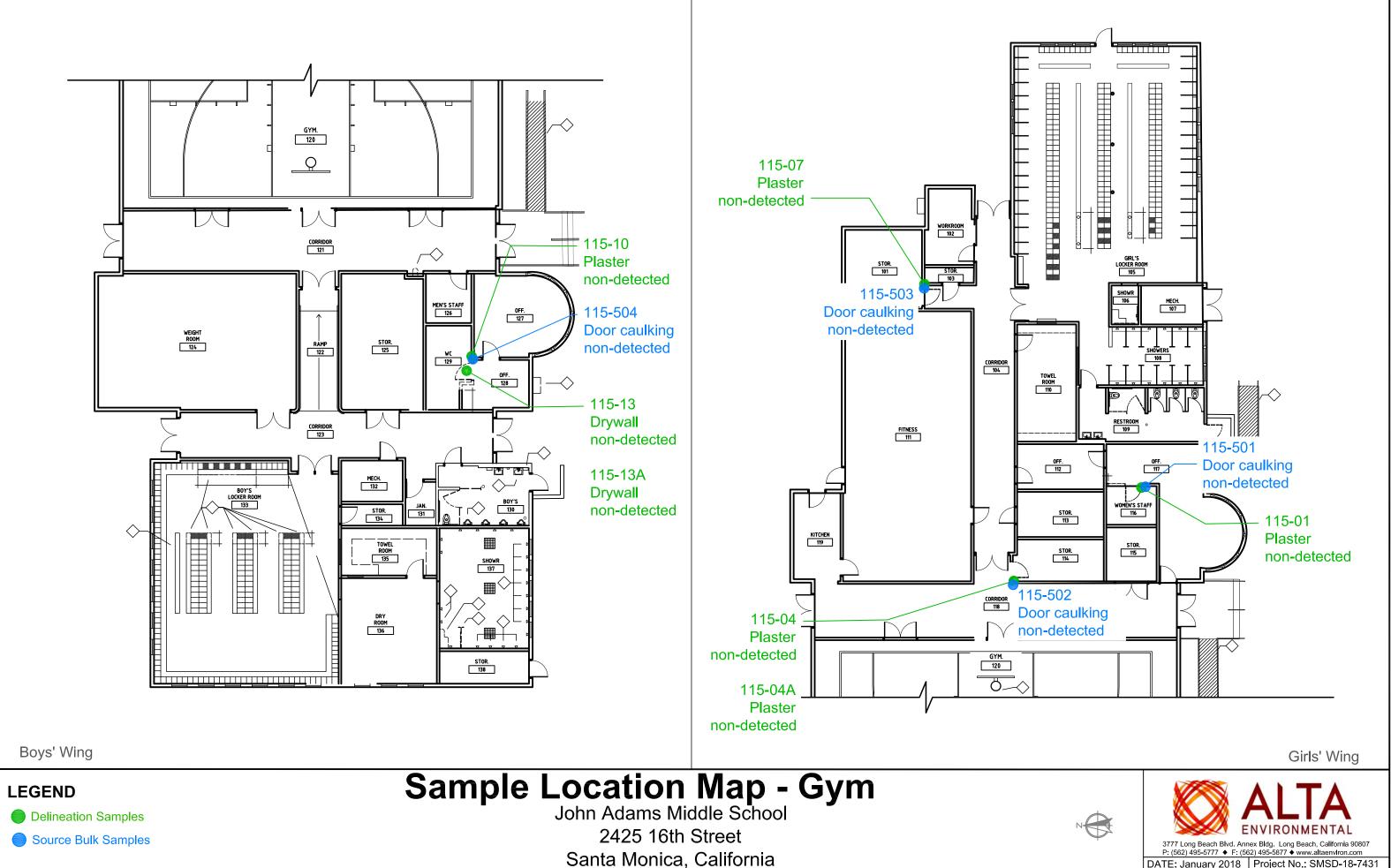
PQL = Practical Quantitation Limit

Actual Detection Limit = DF X PQL

ND = Non-Detected Or Below the Actual Detection Limit

* = Sum of the PCB 1016, 1221, 1232, 1242, 1248, 1254 and 1260

*** = The concentration exceeds the TTLC Limit of 50, and the sample is defined as hazardous waste as per CCR_TITLE 22 (if marked)


PCB (1016+1260) 0.000 0.100 0.084 84% 0.082 82% 2% 0-20% 70-7 Lab Control Spike (LCS) Recovery:				En	viro-Ch	em, Inc				
Matrix Soil/Solid/Sludge Date Analyzed 1/19/2018 Unit: mg/Kg(PPM) Matrix Spike (MS)/Matrix Spike Duplicate (MSD) Spiked Sample Lab ID.: 180119-LCS 1/2 Analyte S.R. spk conc MS %REC MSD %REC %RPD ACP %RPD ACP %RPD ACP % PCB (1016+1280) 0.000 0.100 0.084 84% 0.082 82% 2% 0-20% 70~ Lab Control Spike (LCS) Recovery: Image: Spik conc LCS % REC ACP %REC 2% 0-20% 70~ Lab Control Spike (LCS) Recovery: Image: Spik conc LCS % REC ACP %REC 2% 0-20% 70~ Surrogate Recovery ACP% MREC MAE 180115-60 180115-61 180115-62 Image: Spite 180 Image: S		1214 E	. Lexington A	venue, Pom	ona, CA 9176	6 Tel (90	9)590-5905 F	ax (909)590-5	907	
Matrix Soil/Solid/Sludge Date Analyzed 1/19/2018 Unit: mg/Kg(PPM) Matrix Spike (MS)/Matrix Spike Duplicate (MSD) Spiked Sample Lab I.D.: 180119-LCS 1/2 Analyte S.R. spk conc MS %REC MSD %RPD ACP %RPD ACP %RPD ACP %RPD ACP %RPD ACP % 70- Lab Control Spike (LCS) Recovery: Maintyle spk conc LCS % REC ACP %REC							_			
Unit: mg/Kg(PPM) Matrix Spike (MS)/Matrix Spike Duplicate (MSD) Spiked Sample Lab I.D.: 180119-LCS 1/2 Analyte S.R. spk conc MS %REC MSD %REC %RPD ACP % ACP % 0.082 82% 2% 0-20% 70-7 Lab Control Spike (LCS) Recovery:			EP	<u>28 A 2</u>	<u>82 QA</u>	VQC F	Repor	t		
Unit: mg/Kg(PPM) Matrix Spike (MS)/Matrix Spike Duplicate (MSD) Spiked Sample Lab I.D.: 180119-LCS 1/2 Analyte S.R. spk conc MS %REC MSD %REC %RPD ACP % ACP % 0.082 82% 2% 0-20% 70-7 Lab Control Spike (LCS) Recovery:	Matrix:	Soil/So	lid/Slud	ae		Date Analy	zod.	1/10/2018		
Matrix Spike (MS)/Matrix Spike Duplicate (MSD) Spiked Sample Lab I.D.: 180119-LCS 1/2 Analyte S.R. spk conc MS %REC MSD %REC %RPD ACP %RPD ACP % PCB (1016+1260) 0.000 0.100 0.084 84% 0.082 82% 2% 0-20% 70- Lab Control Spike (LCS) Recovery: Analyte spk conc LCS % REC ACP %REC PCB (1016+1260) 0.100 0.090 90% 75-125 Surrogate Recovery ACP% ACP% %REC %REC <t< td=""><td></td><td>- CO</td><td></td><td><u>yc</u></td><td></td><td>Date Analy</td><td>260.</td><td>1/19/2010</td><td></td><td></td></t<>		- CO		<u>yc</u>		Date Analy	260.	1/19/2010		
Spiked Sample Lab I.D.: 180119-LCS 1/2 Analyte S.R. spk conc MS %REC MSD %REC %RPD ACP %RPD ACP % PCB (1016+1260) 0.000 0.100 0.084 84% 0.082 82% 2% 0-20% 70- Lab Control Spike (LCS) Recovery: Analyte spk conc LCS % REC ACP %REC PCB (1016+1260) 0.100 0.090 90% 75-125 Surrogate Recovery ACP% ACP% %REC	ona	martatiri	<u>*1)</u>							
Analyte S.R. spk conc MS %REC MSD %REC %RPD ACP %RPD ACP % RPD ACP % REC	Matrix Spike (MS)	Matrix Spi	ke Duplicat	e (MSD)						
PCB (1016+1260) 0.000 0.100 0.084 84% 0.082 82% 2% 0-20% 70- Lab Control Spike (LCS) Recovery:	Spiked Sample La	<u>ib I.D.:</u>	5	180119	-LCS 1/2	2				
PCB (1016+1260) 0.000 0.100 0.084 84% 0.082 82% 2% 0-20% 70- Lab Control Spike (LCS) Recovery:										
Lab Control Spike (LCS) Recovery: Analyte spk conc LCS % REC ACP %REC PCB (1016+1260) 0.100 0.090 90% 75-125 Surrogate Recovery ACP% ACP% %REC		S.R.	spk conc		%REC	a local	%REC	%RPD	ACP %RPD	ACP %REC
Analyte spk conc LCS % REC ACP %REC PCB (1016+1260) 0.100 0.090 90% 75-125 Surrogate Recovery ACP% ACP% %REC	PCB (1016+1260)	0.000	0.100	0.084	84%	0.082	82%	2%	0-20%	70-130
Analyte spk conc LCS % REC ACP %REC PCB (1016+1260) 0.100 0.090 90% 75-125 Surrogate Recovery ACP% ACP% %REC										
Analyte spk conc LCS % REC ACP %REC PCB (1016+1260) 0.100 0.090 90% 75-125 Surrogate Recovery ACP% ACP% %REC										
PCB (1016+1260) 0.100 0.090 90% 75-125 Surrogate Recovery ACP% ACP% %REC	Lab Control Spike	(LCS) Rec	overy:							
PCB (1016+1260) 0.100 0.090 90% 75-125 Surrogate Recovery ACP% ACP% %REC							1			
Surrogate Recovery ACP% ACP% %REC %REC <td></td>										
Sample I.D. MB 180115-59 180115-60 180115-61 180115-62 Tetra-chloro-meta-xylene 50-150 118% 113% 103% 119% 129%	PCB (1016+1260)	0.100	0.090	90%	75-	125				
Sample I.D. MB 180115-59 180115-60 180115-61 180115-62 Tetra-chloro-meta-xylene 50-150 118% 113% 103% 119% 129%										
Sample I.D. MB 180115-59 180115-60 180115-61 180115-62 Tetra-chloro-meta-xylene 50-150 118% 113% 103% 119% 129%	Currente Deseure	2	A O D 0/	ACD9/		N DEC	0/ 050	0/ DEC	0/ DEC	0/ DE0
Tetra-chloro-meta-xylene 50-150 118% 113% 103% 119% 129% Image: constraint of the synthesis of the syn		у	ACP%			and the second se	And in case of the local division of the loc			%REC
Decachlorobipneyl50-15083%88%110%70%118%Image: constraint of the second secon		u dan a	50.450		1	1				
Surrogate Recovery %REC %		xylene								
Sample I.D. Image: Constraint of the second sec	Decacniorobipneyi		50-150	83%	88%	110%	70%	118%		
Sample I.D. Image: Constraint of the second sec	Surrogate Recover		%REC	%REC	%REC	%REC	%REC	%REC	%REC	%REC
Tetra-chloro-meta-xylene Image: Constraint of the system Decachlorobipneyl Image: Constraint of the system Surrogate Recovery %REC %REC %REC %REC Sample I.D. Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Tetra-chloro-meta-xylene Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Decachlorobipneyl Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system		<u>y</u>	70TCLO	JUINEO		70112.0	70TCLO	70INEO	70TCEO	TOTALO
Decachlorobipneyl Image: Constraint of the second seco		vulono							1	
Surrogate Recovery %REC %REC %REC %REC %REC Sample I.D. Image: Comparison of the system of the syst		kylerie								
Sample I.D. Image: Constraint of the second secon	Decachioropipheyr				()					
Sample I.D. Image: Constraint of the second secon	Surrogate Recover	v	%REC	%REC	%REC	%REC	%REC	%REC	1	
Tetra-chloro-meta-xylene Decachlorobipneyl										
Decachlorobipneyl		xvlene								
									8	
S.R. = Sample Result * = Surrogate fail due to matrix interference (If Marked)					A				6	
	S.R. = Sample Result			* = Surrogate	fail due to mat	rix interference	(If Marked)			
spk conc = Spike Concentration Note: LCS, MS, MSD are in control therefore results are in control.		entration						re in control.		
%REC = Percent Recovery										
ACP %RPD = Acceptable Percent RPD Range			D Range							

ACP %REC = Acceptable Percent Recovery Range

Analyzed and Reviewed By:

Appendix C

Sample Location Maps

DATE: January 2018 Project No.: SMSD-18-7431

Appendix D

Photographs

DELINEATION SAMPLES

115-01 thru 115-03

115-07 thru 115-09

115-10 thru 115-12

115-12 thru 115-15

SOURCE BULK SAMPLES

Sample 1115-S01

Sample 1115-S03

