Appendix D

Noise Modeling Calculations

ASCENT

Demolition (LEQ)

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	363	65.0	Front End Loader	80	0.4
1507 Maple Street	100	76.2	Pickup Truck	55	0.4
1352 Pine Street	180	71.1	Excavator	85	0.4
2323 14th Street	40	84.2			
2323 14th Street	40	84.2			

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Front End Loader	76.0
Pickup Truck	51.0
Excavator	81.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

82.2

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

ASCENT

Demolition (LMAX)

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	574	65.0	Front End Loader	80	1
1507 Maple Street	100	80.2	Pickup Truck	55	1
1352 Pine Street	180	75.1	Excavator	85	1
2323 14th Street	40	88.1			

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Front End Loader	80.0
Pickup Truck	55.0
Excavator	85.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

86.2

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Grading (LEQ)

ENVIRONMEN

ASCENT

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	423	65.0	Front End Loader	80	0.4
1507 Maple Street	100	77.5	Backhoe	80	0.4
1352 Pine Street	180	72.4	Compactor (ground)	80	0.2
2323 14th Street	40	85.5	Dozer	85	0.4

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Front End Loader	76.0
Backhoe	76.0
Compactor (ground)	73.0
Dozer	81.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

83.6

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Grading (LMAX)

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	698	65.0	Front End Loader	80	1
1507 Maple Street	100	81.9	Backhoe	80	1
1352 Pine Street	180	76.8	Compactor (ground)	80	1
2323 14th Street	40	89.8	Dozer	85	1

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Front End Loader	80.0
Backhoe	80.0
Compactor (ground)	80.0
Dozer	85.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

87.9

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Paving (LEQ)

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	455	65.0	Front End Loader	80	0.4
1507 Maple Street	100	78.2	Roller	85	0.2
1352 Pine Street	180	73.0	Paver	85	0.5
2323 14th Street	40	86.1			

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Front End Loader	76.0
Roller	78.0
Paver	82.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

84.2

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Paving (LEQ)

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	761	65.0	Front End Loader	80	1
1507 Maple Street	100	82.6	Roller	85	1
1352 Pine Street	180	77.5	Paver	85	1
2323 14th Street	40	90.6			

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Front End Loader	80.0
Roller	85.0
Paver	85.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

88.6

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

 ${\rm G}$ = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Construction (LEQ)

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eq} dBA)	Equipment	feet ¹	Factor ¹
threshold	178	65.0	Pickup Truck	55	0.4
1507 Maple Street	100	70.0	Pickup Truck	55	0.4
1352 Pine Street	180	64.9	Compressor (air)	80	0.4
2323 14th Street	40	78.0			

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Pickup Truck	51.0
Pickup Truck	51.0
Compressor (air)	76.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

76.0

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Construction (LMAX)

				Reference Emission	
	Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eg} dBA)	Equipment	feet ¹	Factor ¹
threshold	282	65.0	Pickup Truck	55	1
1507 Maple Street	100	74.0	Pickup Truck	55	1
1352 Pine Street	180	68.9	Compressor (air)	80	1
2323 14th Street	40	82.0			

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level ³	L _{eq} dBA at 50 feet ³
Pickup Truck	55.0
Pickup Truck	55.0
Compressor (air)	80.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

80.0

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Painting (LEQ)

			Reference Emission	
Distance to Nearest	Combined Predicted		Noise Levels (L _{max}) at 50	Usage
Receptor in feet	Noise Level (L _{eg} dBA)	Equipment	feet ¹	Factor ¹
178	65.0	Compressor (air)	80	0.4
100	70.0			
180	64.9			
40	78.0			
	Receptor in feet 178 100 180	Receptor in feet Noise Level (L _{eg} dBA) 178 65.0 100 70.0 180 64.9	Receptor in feetNoise Level (Leg dBA)Equipment17865.0Compressor (air)10070.018064.9	Distance to NearestCombined PredictedNoise Levels (L_max) at 50Receptor in feetNoise Level (Leg dBA)Equipmentfeet117865.0Compressor (air)8010070.018064.9

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level 3Leq dBA at 50 feet3Compressor (air)76.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

76.0

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Painting (LMAX)

	Distance to Nearest	Combined Predicted		Reference Emission Noise Levels (L _{max}) at 50	Usage
Location	Receptor in feet	Noise Level (L _{eg} dBA)	Equipment	feet ¹	Factor ¹
threshold	281	65.0	Compressor (air)	80	1
1507 Maple Street	100	74.0			
1352 Pine Street	180	68.9			
2323 14th Street	40	81.9			

Ground Type	hard
Source Height	8
Receiver Height	5
Ground Factor ²	0.00

Predicted Noise Level 3Leq dBA at 50 feet3Compressor (air)80.0

Combined Predicted Noise Level (L_{eq} dBA at 50 feet)

80.0

Sources:

¹ Obtained from the FHWA Roadway Construction Noise Model, January 2006. Table 1.

² Based on Figure 6-5 from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 6-23).

³ Based on the following from the Federal Transit Noise and Vibration Impact Assessment, 2006 (pg 12-3).

 $L_{eq}(equip) = E.L.+10*log (U.F.) - 20*log (D/50) - 10*G*log (D/50)$

Where: E.L. = Emission Level;

U.F.= Usage Factor;

G = Constant that accounts for topography and ground effects (FTA 2006: pg 6-23); and

Equipment Description	Acoustical Usage Factor (%)	Spec 721.560 Lmax @ 50ft (dBA slow)	Actual Measured Lmax @ 50ft (dBA slow)	No. of Actual Data Samples (count)	Spec 721.560 LmaxCalc	Spec 721.560 Leq	Distance	Actual Measured LmaxCalc	Actual Measured Leq
Auger Drill Rig	20	85	84	36	79.0	72.0	100	78.0	71.0
Backhoe	40	80	78	372	74.0	70.0	100	72.0	68.0
Bar Bender	20	80	na	0	74.0	67.0	100		
Blasting	na	94	na	0	88.0		100		
Boring Jack Power Unit	50	80	83	1	74.0	71.0	100	77.0	74.0
Chain Saw	20	85	84	46	79.0	72.0	100	78.0	71.0
Clam Shovel (dropping)	20	93	87	4	87.0	80.0	100	81.0	74.0
Compactor (ground)	20	80	83	57	74.0	67.0	100	77.0	70.0
Compressor (air)	40	80	78	18	74.0	70.0	100	72.0	68.0
Concrete Batch Plant	15	83	na	0	77.0	68.7	100		
Concrete Mixer Truck	40	85	79	40	79.0	75.0	100	73.0	69.0
Concrete Pump Truck	20	82	81	30	76.0	69.0	100	75.0	68.0
Concrete Saw	20	90	90	55	84.0	77.0	100	84.0	77.0
Crane	16	85	81	405	79.0	71.0	100	75.0	67.0
Dozer	40	85	82	55	79.0	75.0	100	76.0	72.0
Drill Rig Truck	20	84	79	22	78.0	71.0	100	73.0	66.0
Drum Mixer	50	80	80	1	74.0	71.0	100	74.0	71.0
Dump Truck	40	84	76	31	78.0	74.0	100	70.0	66.0
Excavator	40	85	81	170	79.0	75.0	100	75.0	71.0
Flat Bed Truck Front End Loader	40 40	84 80	74 79	4 96	78.0 74.0	74.0 70.0	100 100	68.0	64.0 69.0
Generator	40 50	80 82	79 81	96 19	74.0	70.0	100	73.0 75.0	72.0
Generator (<25KVA, VMS si		82 70	73	74	64.0	61.0	100	67.0	72.0 64.0
Gradall	40	85	83	74	79.0	75.0	100	77.0	73.0
Grader	40	85	na	0	79.0	75.0	100	77.0	75.0
Grapple (on Backhoe)	40	85	87	1	79.0	75.0	100	81.0	77.0
Horizontal Boring Hydr. Jac	25	80	82	6	74.0	68.0	100	76.0	70.0
Hydra Break Ram	10	90	na	0	84.0	74.0	100	, 0.0	70.0
Impact Pile Driver	20	95	101	11	89.0	82.0	100	95.0	88.0
Jackhammer	20	85	89	133	79.0	72.0	100	83.0	76.0
Man Lift	20	85	75	23	79.0	72.0	100	69.0	62.0
Mounted Impact Hammer (90	90	212	84.0	77.0	100	84.0	77.0
Pavement Scarafier	20	85	90	2	79.0	72.0	100	84.0	77.0
Paver	50	85	77	9	79.0	76.0	100	71.0	68.0
Pickup Truck	40	55	75	1	49.0	45.0	100	69.0	65.0
Pneumatic Tools	50	85	85	90	79.0	76.0	100	79.0	76.0
Pumps	50	77	81	17	71.0	68.0	100	75.0	72.0
Refrigerator Unit	100	82	73	3	76.0	76.0	100	67.0	67.0
Rivit Buster/chipping gun	20	85	79	19	79.0	72.0	100	73.0	66.0
Rock Drill	20	85	81	3	79.0	72.0	100	75.0	68.0
Roller	20	85	80	16	79.0	72.0	100	74.0	67.0
Sand Blasting (Single Nozzle		85	96	9	79.0	72.0	100	90.0	83.0
Scraper	40	85	84	12	79.0	75.0	100	78.0	74.0
Shears (on backhoe)	40	85	96	5	79.0	75.0	100	90.0	86.0
Slurry Plant	100	78	78	1	72.0	72.0	100	72.0	72.0
Slurry Trenching Machine	50	82	80	75	76.0	73.0	100	74.0	71.0
Soil Mix Drill Rig	50	80	na	0	74.0	71.0	100		
Tractor	40	84	na	0	78.0	74.0	100		75.0
Vacuum Excavator (Vac-tru		85	85	149	79.0	75.0	100	79.0	75.0
Vacuum Street Sweeper	10	80 85	82	19 12	74.0	64.0	100	76.0	66.0
Ventilation Fan	100	85 85	79 87	13	79.0	79.0	100	73.0	73.0
Vibrating Hopper	50 20	85 80	87 80	1	79.0 74.0	76.0	100	81.0	78.0
Vibratory Concrete Mixer	20	80	00	1	74.0	67.0	100	74.0	67.0

Equipment Description	Acoustical Usage Factor (%)	Spec 721.560 Lmax @ 50ft (dBA slow)	Actual Measured Lmax @ 50ft (dBA slow)	No. of Actual Data Samples (count)	Spec 721.560 LmaxCalc	Spec 721.560 Leq	Distance	Actual Measured LmaxCalc	Actual Measured Leq
Vibratory Pile Driver	20	95	101	44	89.0	82.0	100	95.0	88.0
Warning Horn	5	85	83	12	79.0	66.0	100	77.0	64.0
Welder / Torch	40	73	74	5	67.0	63.0	100	68.0	64.0

Source:

FHWA Roadway Construction Noise Model, January 2006. Table 9.1

U.S. Department of Transportation

CA/T Construction Spec. 721.560

OBJECTIVE: This work sheet is designed to estiamte the combined level of noise exposure at a single discrete receptor from multiple point so

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

Receptor Name: Houses on East Side of West Taron Drive (back yards) Close to Riparian Court During Daytime and Nighttime Hours

STEP 1: Identify the noise sources and enter the reference noise levels (dBA and distance).

STEP 2: Select the ground type (hard or soft), and enter the source and receiver heights.

STEP 3: Select the distance to the receptor and the reduction provided by any intervening barrier.

Step 1.				Step 2.							
Noise Source	Reference	ce No	oise Level	A	ttenuation (Characteristics		Attenuate	d Noi	se Level at R	eceptor
											Reduction
	Reference										Provided
	Noise		Reference		Source	Receiver	Ground	Noise		Distance to	by Barrier,
New Building 10 (Phase 4)	Level		Distance	Ground Type	Height	Height	Factor	Level		Receptor	if any
to 1701 Cedar Street	(dBA)	@	(ft)	(soft/hard)	(ft)	(ft)		(dBA)	@	(ft)	(dBA)
HVAC Unit	70.0	@	50	hard	35	5	0.00	68.4	@	60	0
HVAC Unit	70.0	@	50	hard	35	5	0.00	68.4	@	60	0
HVAC Unit	70.0	@	50	hard	35	5	0.00	68.4	@	60	0
HVAC Unit	70.0	@	50	hard	35	5	0.00	68.4	@	60	0

Combined level of noise exposure at receptor from all noise sources (dBA): 74.4

Notes:

1 - Computation of the attenuated noise level is based on the equation presented on pg. 176 and 177 of FTA 2018.

- 2 Computation of the ground factor is based on the equation presentd in Table 4-26 on pg. 86 of FTA 2018, where the distance of the reference noise leve can be adjusted
- 3 Summation of noise levels from different stationary noise sources at the same receptor is based on the equation presented on page 201 of FTA 2018.

Sources:

Federal Transit Association (FTA). 2018 (September). Transit Noise and Vibration Impact Assessment. Washington, D.C. Available: <a href="http://www.transit.dot.gov/sites/fta.

Sources:

Federal Transit Association (FTA). 2006 (May). Transit Noise and Vibration Impact Assessment. FTA-VA-90-1003-06. Washington, D.C. Available: http://www.fta.dot.gov/documents/FTA_Noise_and_Vibration_Manual.pdf>. Accessed: March 5, 2020.

Addition of Noise Levels from Multiple Sources at a Discrete Receptor

OBJECTIVE: This work sheet is designed to estiamte the combined level of noise exposure at a single discrete receptor from multiple point so

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

Receptor Name: Houses on East Side of West Taron Drive (back yards) Close to Riparian Court During Daytime and Nighttime Hours

STEP 1: Identify the noise sources and enter the reference noise levels (dBA and distance).

STEP 2: Select the ground type (hard or soft), and enter the source and receiver heights.

STEP 3: Select the distance to the receptor and the reduction provided by any intervening barrier.

Step 1.				Step 2.							
Noise Source	Referen	ce No	ise Level	A	ttenuation (Characteristics		Attenuate	d Noi	se Level at R	eceptor
											Reduction
	Reference										Provided
	Noise		Reference		Source	Receiver	Ground	Noise		Distance to	by Barrier,
New Building 10 (Phase 4)	Level		Distance	Ground Type	Height	Height	Factor	Level		Receptor	if any
to 1701 Cedar Street	(dBA)	@	(ft)	(soft/hard)	(ft)	(ft)		(dBA)	@	(ft)	(dBA)
HVAC Unit	73.0	@	50	hard	35	5	0.00	63.8	@	145	0
HVAC Unit	73.0	@	50	hard	35	5	0.00	63.8	@	145	0
HVAC Unit	73.0	@	50	hard	35	5	0.00	63.8	@	145	0
HVAC Unit	73.0	@	50	hard	35	5	0.00	63.8	@	145	0

Combined level of noise exposure at receptor from all noise sources (dBA): 69.8

Notes:

1 - Computation of the attenuated noise level is based on the equation presented on pg. 176 and 177 of FTA 2018.

2 - Computation of the ground factor is based on the equation presentd in Table 4-26 on pg. 86 of FTA 2018, where the distance of the reference noise leve can be adjusted

3 - Summation of noise levels from different stationary noise sources at the same receptor is based on the equation presented on page 201 of FTA 2018.

Sources:

Federal Transit Association (FTA). 2018 (September). Transit Noise and Vibration Impact Assessment. Washington, D.C. Available: http://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-

Sources:

Federal Transit Association (FTA). 2006 (May). Transit Noise and Vibration Impact Assessment. FTA-VA-90-1003-06. Washington, D.C. Available: http://www.fta.dot.gov/documents/FTA_Noise_and_Vibration_Manual.pdf>. Accessed: March 5, 2020.

ASCENT

Parking Lot Noise Calculation

KEY: Orange cells are for input.

Green cells are data to present in a written analysis (output).

Number of automobiles per hour	145
Number of buses per hour	0
Distance to sensitive receptor (feet)	40

	<u>distance</u>	sound level
Leq @	50	54.0
Leq @	40	55.9

<u>Source</u>

Federal Transit Administration. 2018 (September). Transit Noise and Vibration Impact Assessment. Washington, D.C. Available: https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/researchinnovation/118131/transit-noise-and-vibration-impact-assessment-manual-fta-report-no-0123_0.pdf. Accessed February 4, 2019. See pages 45–47, including Equation 4-14.

KEY: Orange cells are for input.

Grey cells are intermediate calculations performed by the model.

Green cells are data to present in a written analysis (output).

STEP 1: Determine units in which to perform calculation.

- If vibration decibels (VdB), then use Table A and proceed to Steps 2A and 3A.
- If peak particle velocity (PPV), then use Table B and proceed to Steps 2B and 3B.

STEP 2A: Identify the vibration source and enter the reference vibration level (VdB) and distance.

STEP 3A: Select the distance to the receiver.

Noise Source/ID	Reference Noise Level		
Phase 3: 6th Grade Cohort Roller	vibration level		distance
to 1703 Pine Street	(VdB)	@	(ft)
Vibratory Roller	94	@	25
Hoe Ram	87	@	25
Large Bulldozer	87.0	@	25
Loaded Trucks	86	@	25
Jackhammer	79.0	@	25

Attenuated Noise Level at Receptor					
vibration level		distance			
(VdB)	@	(ft)			
94.0	@	25			
87.0	@	25			
87.0	@	25			
86.0	@	25			
79.0	@	25			

The Lv metric (VdB) is used to assess the likelihood for vibration to result in human annoyance.

STEP 2B: Identify the vibration source and enter the reference peak particle velocity (PPV) and distance.

Table B. Propagation of peak particle velocity (PPV) with distance

Noise Source/ID	Reference Noise Level		
Phase 3: 6th Grade Cohort Roller	vibration level		distance
to 1703 Pine Street	(PPV)	@	(ft)
Vibratory Roller	0.210	@	25
Hoe Ram	0.089	@	25
Large Bulldozer	0.089	@	25
Loaded Trucks	0.076	@	25
Jackhammer	0.035	@	25

STEP 3B: Select the distance to the receiver.

Attenuated Noise Level at Receptor					
vibration level		distance			
(PPV)	@	(ft)			
0.210	@	25			
0.089	@	25			
0.089	@	25			
0.076	@	25			
0.035	@	25			

The PPV metric (in/sec) is used for assessing the likelihood for the potential of structural damage.

Notes:

Computation of propagated vibration levels is based on the equations presented on pg. 185 of FTA 2018. Estimates of attenuated vibration levels do not account for reductions from intervening underground barriers or other underground structures of any type, or changes in soil type.

Federal Transit Association (FTA). 2018 (September). Transit Noise and Vibration Impact Assessment Manual. FTA Report No. 0123. Washington, D.C. Accessed: December 20, 2020. Page Available:

https://www.transit.dot.gov/sites/fta.dot.gov/files/docs/research-innovation/118131/transit-noise-and-vibrationimpact-assessment-manual-fta-report-no-0123_0.pdf