| Practice | Sample Student Evidence | Sample Teacher Actions | |--|---|---| | Make sense of problems and persevere in solving them. | Display sense-making behaviors. Show patience and listen to others. Turn and talk for first steps or generate a solution plan. Analyze information in problems. Use and recall multiple strategies. Self-evaluate and redirect. Assess the reasonableness of process and answer. | Provide open-ended problems. Ask probing questions. Probe student responses. Promote and value discourse. Promote collaboration. Model and accept multiple approaches. | | 2. Reason abstractly and quantitatively. | □ Represent abstract and contextual situations symbolically. □ Interpret problems logically in context. □ Estimate for reasonableness. □ Make connections, including real-life situations. □ Create and use multiple representations. □ Visualize problems. □ Put symbolic problems into context. | Model context to symbol and symbol to context. Create problems such as, "What word problem will this equation solve?" Give real-world situations. Offer authentic performance tasks. Place less emphasis on the answer. Value invented strategies. Think aloud. | | Construct viable arguments and critique the reasoning of others. | Question others. Use examples and nonexamples. Support beliefs and challenges with mathematical evidence. Form logical arguments with conjectures and counterexamples. Use multiple representations for evidence. Listen and respond to others well. Use precise mathematical vocabulary. | Create a safe and collaborative environment. Model respectful discourse behaviors. Provide find-the-error problems. Promote student-to-student discourse (do not mediate discussion). Plan effective questions or Socratic formats. Provide time and value discourse. | | 4. Model with mathematics. | Connect math (numbers and symbols) to real-life situations. Symbolize real-world problems with math. Make sense of mathematics. Apply prior knowledge to solve problems. Choose and apply representations, manipulatives, and other models to solve problems. Use strategies to make problems simpler. Use estimation and logic to check the reasonableness of an answer. | Model reasoning skills. Provide meaningful, real-world, authentic, performance-based tasks. Make appropriate tools available. Model various modeling techniques. Accept and value multiple approaches and representations. | | 5. Use appropriate tools strategically. | Choose appropriate tool(s) for a given problem. Use technology to deepen understanding. Identify and locate resources. Defend mathematically the choice of a tool. | Provide a toolbox at all times with all available tools; students then choose as needed. Model tool use, especially technology for understanding. | | Practice | Sample Student Evidence | Sample Teacher Actions | |--|---|---| | 6. Attend to precision. | Communicate (orally and in writing) with precise vocabulary. Carefully formulate questions and explanations (not retelling steps). Decode and interpret the meaning of symbols. Pay attention to units, labeling, scale, and so forth. Calculate accurately and effectively. Express answers within context when appropriate. | Model problem-solving strategies. Give explicit and precise instruction. Ask probing questions. Use English language arts strategies of decoding, comprehending, and text-to-self connections for interpreting symbolic and contextual math problems. Guided inquiry. | | 7. Look for and make use of structure. | Look for, identify, and interpret patterns and structures. Make connections to skills and strategies previously learned to solve new problems and tasks. Breakdown complex problems into simpler and more manageable chunks. Use multiple representations for quantities. View complicated quantities as both a single object and a composition of objects. | Let students explore and explain patterns. Use open-ended questioning. Prompt students to make connections and choose problems that foster connections. Ask for multiple interpretations of quantities. | | Look for and express regularity in repeated reasoning. | Design and state shortcuts. Generate rules from repeated reasoning or practice (e.g., integer operations). Evaluate the reasonableness of intermediate steps. Make generalizations. | Provide tasks that allow students to generalize. Don't teach steps or rules, but allow students to explore and generalize to discover and formalize. Ask deliberate questions. Create strategic and purposeful check-in points. | Source: Adapted from "Common Core Look Fors (CCL4s)" (iPad App). Adapted from NCSM Summer Leadership Academy, June, 2011, Atlanta, Ga.